用户名: 密码: 验证码:
风云三号卫星微波观测的临近空间大气扰动特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Gravity waves in the near space observed by the microwave temperature sounder of the FY-3C meteorology satellite
  • 作者:姚志刚 ; 孙睿 ; 赵增亮 ; 崔新东 ; 韩志刚 ; 严卫
  • 英文作者:YAO ZhiGang;SUN Rui;ZHAO ZengLiang;CUI XinDong;HAN ZhiGang;YAN Wei;State Key Laboratory of Geo-Information Engineering;Beijing Institute of Applied Meteorology;No.91954 Troops of PLA;Institute of Meteorology and Oceanography,National University of Defense Technology;
  • 关键词:风云卫星 ; 微波 ; 临近空间 ; 重力波
  • 英文关键词:FY satellite;;Microwave;;Near space;;Gravity waves
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:地理信息工程国家重点实验室;北京应用气象研究所;中国人民解放军91954部队;国防科技大学气象海洋学院;
  • 出版日期:2019-02-15
  • 出版单位:地球物理学报
  • 年:2019
  • 期:v.62
  • 基金:国家自然科学基金项目(41575031);; 中国博士后基金一等资助(2015M580124)联合资助
  • 语种:中文;
  • 页:DQWX201902003
  • 页数:16
  • CN:02
  • ISSN:11-2074/P
  • 分类号:33-48
摘要
风云三号C星(FY-3C)同时装载有设置了50~60GHz和118.75GHz附近氧气吸收带内通道的微波大气垂直探测器,可以用于监测临近空间下部的大气温度.本文的首要目的是展示FY-3C微波大气垂直探测器在监测临近空间(尤其是平流层)强重力波扰动中的优势特点.在给出平流层强扰动监测结果的基础上,分析了不同波段不同通道监测平流层大气温度扰动的能力.随后,对比分析了FY-3C大气温度探测通道与国外同类仪器在观测平流层扰动中的异同点,并进一步讨论了不同平台相同大气微波探测通道联合分析平流层扰动过程的能力.本文在统计2013年冬季(2012年12月和2013年1、2月)和2014年夏季(2014年6、7、8月)的微波大气垂直探测器观测的全球平流层扰动出现频率分布的基础上,利用FY-3C微波大气温度探测器分析了格陵兰岛附近2014年1月7—11日一次平流层扰动过程.结果表明,FY-3C微波探测器50~60GHz和118.75GHz波段可用于获取平流层不同高度上的大气温度扰动特征,且前一波段的探测能力显著地优于后一波段.随后,针对2014年1月11日拉布拉多半岛附近的平流层强扰动过程,基于FY-3C的MWTS-Ⅱ与METOP-B的AMSU-A的对比观测表明,MWTS-Ⅱ能够揭示平流层波动更细致的水平结构特征.最后,针对2014年8月10日安第斯山脉附近不同平台仪器的相同通道探测结果的分析表明,多平台联合观测可以进一步提高平流层强扰动监测的时间分辨率.
        Microwave observations in oxygen absorption bands near 50~60 GHz and 118.75 GHz of the MicroWave Temperatuer SounderⅡ(MWTS-Ⅱ)on FY-3C can be used to monitor the atmospheric temperature of the near space.This study demonstrates the advantages of the MWTS-Ⅱin the observations of the strong Gravity Wave(GW)disturbances in the near space,especially the stratosphere. Meanwhile the capability of different channels to monitor thestratospheric atmospheric temperature disturbance is analyzed based on the statistical results of strong GWs disturbances in the stratosphere.Then,the similarities and differences between the FY-3C microwave temperature sounder and other similar instruments in observing stratospheric GWs perturbations are presented,and the capability of the similar atmospheric microwave channels on different satellites to analyze the stratospheric GWs is discussed.Besides,the frequency distribution of global stratospheric GWs disturbances in the winter from December 2013 to February 2014 and the summer of 2014(June,July and August)is calculated.A stratospheric GWs process from 7~(th) to 11~(th) January 2014 in Greenland shows that the 50~60 GHz and 118.75 GHz bands of the MWTS-Ⅱ permits to capture the atmospheric temperature disturbances at different heights of the stratosphere.And the detection capability of 50~60 GHz band is significantly better than the latter.The comparison between AMSU-A of METOP-B and MWTS-Ⅱ of FY-3C via a GWs process of the stratosphere near the Labrador Peninsula on 11~(th) January 2014 indicates that MWTS-Ⅱcan detect finer stratospheric gravity waves,and the intensity of the disturbance from MWTS-Ⅱis also stronger.The analysis of the similar channels of different platforms for a GWs process near the Andes on 10~(th) August 2014 shows that the multi-platform observations can further improve the temporal resolution of the stratospheric GW observations.
引文
Alexander M J,Barnet C.2007.Using satellite observations to constrain parameterizations of gravity wave effects for global models.J.Atmos.Sci.,64(5):1652-1665.
    Alexander M J,Pfister L.1995.Gravity wave momentum flux in the lower stratosphere over convection.Geophys.Res.Lett.,22(15):2029-2032.
    Alexander S P,Tsuda T,Kawatani Y,et al.2008.Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere:COSMIC observations of wave mean flow interactions.J.Geophys.Res.-Atmos.,113:D24115,doi:10.1029/2008JD010039.
    Allen S J,Vincent R A.1995.Gravity wave activity in the lower atmosphere:Seasonal and latitudinal variations.J.Geophys.Res.,100(D1):1327-1350.
    D9rnbrack A,Leutbecher M,Kivi R,et al.1999.Mountain-waveinduced record low stratospheric temperatures above northern Scandinavia.Tellus A,51(5):951-963.
    Durran D R,Klemp J B.1987.Another look at downslope winds.Part II:nonlinear amplication beneath wave-overturning layers.J.Atmos.Sci.,44(22):3402-3412.
    Ern M,Preusse P,Alexander M J,et al.2004.Absolute values of gravity wave momentum flux derived from satellite data.J.Geophys.Res.-Atmos.,109(D20):D20103,doi:10.1029/2004JD004752.
    Eyring V,Waugh D W,Bodeker G E,et al.2007.Multimodel projections of stratospheric ozone in the 21st century.J.Geophys.Res.,112(D16):D16303,doi:10.1029/2006JD008332.
    Fetzer E J,Gille J C.1994.Gravity wave variance in LIMStemperatures.Part 1:variability and comparison with background winds.J.Atmos.Sci.,51(17):2461-2483.
    Fritts D C,Alexander M J.2003.Gravity wave dynamics and effects in the middle atmosphere.Rev.Geophys.,41(1):1003,doi:10.1029/2001RG000106.
    Gong J,Wu D L,Eckermann S D.2012.Gravity wave variances and propagation derived from AIRS radiances.Atmos.Chem.Phys.,12(4):1701-1720.
    Guo Y,Lu N M,Gu S Y,et al.2014.Radiometric characteristics of FY-3Cmicrowave humidity and temperature sounder.Journal of Applied Meteorology(in Chinese),25(4):436-444.
    Hoffmann L,Alexander M J.2010.Occurrence frequency of convective gravity waves during the North American thunderstorm season.J.Geophys.Res.,115(D20):D20111,doi:10.1029/2010JD014401.
    Hoffmann L,Alexander M J,Clerbaux C,et al.2014.Intercomparison of stratospheric gravity wave observations with AIRS and IASI.Atmospheric Measurement Techniques Discussions,7(8):8415-8464,doi:10.5194/amtd-7-8415-2014.
    Hoffmann L,Xue X,Alexander M J.2013.A global view of stratospheric gravity wave hotspots located with atmospheric infrared sounder observations.Journal of Geophysical Research,118(2):416-434.
    Hong J,Yao Z G,Han Z G,et al.2015.Numerical simulations and AIRS observations of stratospheric gravity waves induced by the typhoon Muifa.Chinese J.Geophys.(in Chinese),58(7):2283-2293,doi:10.6038/cjg20150707.
    John S R,Kumar K K.2012.Timed/saber observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere.Climate Dyn.,39(6):1489-1505.
    Koppel L L,Bosart L F,Keyser D.2000.A 25-yr climatology of large-amplitude hourly surface pressure changes over the conterminous United States.Mon.Wea.Rev.,128:51-68.
    LüD R,Bian J C,Chen H B,et al.2009.Frontiers and significance of research on stratospheric processes.Advances in Earth Science(in Chinese),24(3):221-228.
    Pfister L,Starr W,Craig R,et al.1986.Small-scale motions observed by aircraft in the tropical lower stratosphere:Evidence for mixing and its relationship to large-scale flows.J.Atmos.Sci.,43(24):3210-3225.
    Qian H J,Hu X,Tu C.2012.Research on space-based global atmospheric wave imager.Chin.J.Space Sci.(in Chinese),32(3):362-367.
    Ramamurthy M K,Rauber R M,Collins B P,et al.1993.Acomparative study of large-amplitude gravity-wave events.Mon.Wea.Rev.,121:2951-2974.
    Smith R B.1985.On severe downslope winds.J.Atmos.Sci.,42(23):2597-2603.
    Sun R,Yao Z G,Han Z G,et al.2018.Numerical simulation of stratospheric gravity waves induced by a rainstorm.Chin.J.Space Sci.(in Chinese),38(4):469-481.
    Tang Y Q,Zhang J S,Wang J S.2014.FY-3 meteorological satellites and the applications.Chin.J.Space Sci.,34(5):703-709,doi:10.11728/cjss2014.05.703.
    Taylor M J,Hapgood M A.1988.Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions.Planetary and Space Science,36(10):975-985.
    Tsuda T,Murayama Y,Wiryosumarto H,et al.1994.Radiosonde observations of equatorial atmosphere dynamics over Indonesia:2.Characteristics of gravity waves.J.Geophys.Res.,99(D5):10507-10516.
    Tsuda T,Nishida M,Rocken C,et al.2000.A global morphology of gravity wave activity in the stratosphere revealed by the GPSoccultation data(GPS/MET).J.Geophys.Res.,105(D6):7257-7274.
    Uccellini L W,Koch S E.1987.The synoptic setting and possible energy sources for mesoscale wave disturbances.Mon.Wea.Rev.,115(3):721-729.
    Vincent R A,Alexander M J.2000.Gravity waves in the tropical lower stratosphere:An observational study of seasonal and interannual variability.J.Geophys.Res.,105(D14):17971-17982.
    Wu D L.2004.Mesoscale gravity wave variances from AMSU-Aradiances.Geophys.Res.Lett.,31:L12114,doi:10.1029/2004GL019562.
    Wu D L,Preusse P,Eckermann S D,et al.2006.Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques.Adv.Space Res.,37(12):2269-2277.
    Wu D L,Waters J W.1996.Satellite observations of atmospheric variances:A possible indication of gravity waves.Geophys.Res.Lett.,23(24):3631-3634.
    Wu D L,Zhang F Q.2004.A study of mesoscale gravity waves over the North Atlantic with satellite observations and a mesoscale model.J.Geophys.Res.,109:D22104,doi:10.1029/2004JD005090.
    Xu K,Yao Z G,Han Z G,et al.2017.Recent process in near-space gravity wave analysis based on satellite measurements.Adv.Earth Sci.(in Chinese),32(1):66-74.
    Yao Z G,Hong J,Han Z G,et al.2018.Numerical simulation of typhoon-generated gravity waves observed by satellite and its direct validation.Chin.J.Space Sci.(in Chinese),38(2):188-200.
    Yao Z G,Zhao Z L,Han Z G.2015.Stratospheric gravity waves during summer over East Asia derived from AIRS observations.Chinese J.Geophys.(in Chinese),58(4):1121-1134,doi:10.6038/cjg20150403.
    Zhang F Q,Davis C A,Kaplan M L,et al.2001.Wavelet analysis and the governing dynamics of a large-amplitude mesoscale gravity-wave event along the east coast of the United States.Quart.J.Roy.Meteor.Soc.,127(577):2209-2245.
    Zhang F Q,Wang S G,Plougonven R.2004.Uncertainties in using the hodograph method to retrieve gravity wave characteristics from individual soundings.Geophys.Res.Lett.,31:L11110,doi:10.1029/2004GL019841.
    Zhang Y,Xiong J G,Wan W X.2011.Analysis on the global morphology of middle atmospheric gravity waves.Chinese J.Geophys.(in Chinese),54(7):1711-1717,doi:10.3969/j.issn.0001-5733.2011.07.003.
    郭杨,卢乃锰,谷松岩等.2014.FY-3C微波湿温探测仪辐射测量特性.应用气象学报,25(4):436-444.
    洪军,姚志刚,韩志刚等.2015.台风“梅花”诱发平流层重力波的数值模拟与AIRS观测.地球物理学报,58(7):2283-2293,doi:10.6038/cjg20150707.
    吕达仁,卞建春,陈洪滨等.2009.平流层大气过程研究的前沿与重要性.地球科学进展,24(3):221-228.
    钱浩俊,胡雄,涂翠.2012.星载全球大气波动成像仪研究.空间科学学报,32(3):362-367.
    孙睿,姚志刚,韩志刚等.2018.一次暴雨激发平流层重力波的卫星观测与数值模拟.空间科学学报,38(4):469-481.
    徐凯,姚志刚,韩志刚等.2017.临近空间重力波强扰动的卫星观测研究进展.地球科学进展,32(1):66-74.
    姚志刚,洪军,韩志刚等.2018.卫星观测台风重力波数值模拟与直接对比验证.空间科学学报,38(2):188-200.
    姚志刚,赵增亮,韩志刚.2015.AIRS观测的东亚夏季平流层重力波特征.地球物理学报,58(4):1121-1134,doi:10.6038/cjg20150403.
    张云,熊建刚,万卫星.2011.中层大气重力波的全球分布特征.地球物理学报,54(7):1711-1717,doi:10.3969/j.issn.0001-5733.2011.07.003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700