用户名: 密码: 验证码:
桂西北喀斯特区不同退化程度石灰土有机碳与养分剖面分布特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Profile Distribution Characteristics of Organic Carbon and Nutrients in Different Degraded Lime Soils in Karst Area, Northwest Guangxi Province
  • 作者:何铁光 ; 俞月凤 ; 蒙炎成 ; 苏天明 ; 胡钧铭 ; 杜虎 ; 王瑾 ; 李忠义 ; 张野 ; 韦彩会 ; 范适
  • 英文作者:HE Tieguang;YU Yuefeng;MENG Yancheng;SU Tianming;HU Junming;DU Hu;WANG Jin;LI Zhongyi;ZHANG Ye;WEI Caihui;FAN Shi;Agricultural Resources and Environment Research Institute, Guangxi Academy of Agricultural Sciences;Institute of Subtropical Agriculture, Chinese Academy of Sciences;Landscape College, Hunan Polytechnic of Environment and Biology;
  • 关键词:有机碳 ; 剖面分布 ; 石灰土 ; 喀斯特
  • 英文关键词:soil organic carbon;;profile distribution;;lime soil;;karst
  • 中文刊名:STBY
  • 英文刊名:Research of Soil and Water Conservation
  • 机构:广西壮族自治区农业科学院农业资源与环境研究所;中国科学院亚热带农业生态研究所;湖南环境生物职业技术学院园林学院;
  • 出版日期:2019-06-17
  • 出版单位:水土保持研究
  • 年:2019
  • 期:v.26;No.135
  • 基金:国家自然科学基金(31460135);; 广西第十八批“十百千人才工程”专项资金;; 广西农业科学院科技发展资助项目(桂农科2017JM08,桂农科2015JZ17)
  • 语种:中文;
  • 页:STBY201904003
  • 页数:6
  • CN:04
  • ISSN:61-1272/P
  • 分类号:19-24
摘要
利用空间分布代替时间序列的方法,通过建立无退化、潜在退化、轻度退化、中度退化和重度退化5种不同退化程度石灰土的样地,并采集土壤剖面,分析对比了不同退化程度石灰土剖面有机碳和养分含量分布特征。结果表明:不同退化程度石灰土有机碳(SOC)含量与有机碳密度(SOC_i)与土层深度存在极显著负相关关系,即随土层深度增加而降低;轻度退化程度石灰土平均有机碳含量和碳密度最高;不同退化程度石灰土全氮(TN)和碱解氮(AN)含量剖面变化趋势与SOC相似,与土层深度呈极显著负相关性;全磷(TP)和全钾(TK)含量随土层深度的增加而无明显变化,速效磷(AP)和速效钾(AK)含量均随土层深度增加而降低,但均与土层深度无显著相关性;不同退化程度石灰土的C∶N均低于15,说明有机质的分解较容易;5种退化程度石灰土中,SOC和氮素均存在极显著相关关系,与其他养分之间相关性有所差异。
        By means of spatial distribution instead of time series, sample plots of lime soils with five different degrees of degradation, such as no degradation, potential degradation, light degradation, moderate degradation and severe degradation, were established. Soil profile samples were collected, and the distribution characteristics of organic carbon and nutrient contents in different degraded soil profiles were analyzed. The results showed that the content of organic carbon(SOC) and organic carbon density(SOC_i) were significantly negatively correlated with soil depth(p<0.01), i.e. SOC and SOC_i decreased with the increase of soil depth; the average organic carbon content and carbon density of lime soil under light degradation degree were the highest; the change trend of total nitrogen and available nitrogen content of lime soil under different degradation degree were similar to that of SOC, and had a very significant negative correlation with soil depth(p<0.01); the content of total phosphorus and total potassium did not change obviously with the increase of soil depth, and the content of available phosphorus and available potassium decreased with the increase of soil depth, but no significant correlation was found between those nutrient contents and soil depth, respectively; The C∶N of lime soil under different degrees of degradation was less than 15, indicating that the organic matter is readily decomposed. There was a significant correlation between SOC and nitrogen in the five degraded lime soils(p<0.01), and the correlation with other nutrients was different.
引文
[1] 杨明德,梁虹.峰丛洼地形成动力过程与水资源开发利用[J].中国岩溶,2000,19(1):44-51.
    [2] 王克林,苏以荣,曾馥平,等.西南喀斯特典型生态系统土壤特征与植被适应性恢复研究[J].农业现代化研究,2008,29(6):641-645.
    [3] 王世杰,李阳兵.喀斯特石漠化研究存在的问题与发展趋势[J].地球科学进展,2007,22(6):573-582.
    [4] 张伟,王克林,刘淑娟,等.喀斯特峰丛洼地植被演替过程中土壤养分的积累及影响因素[J].应用生态学报,2013,24(7):1801-1808.
    [5] 欧阳资文,彭晚霞,宋同清,等.喀斯特峰丛洼地土壤有机质的空间变化及对干扰的响应[J].应用生态学报,2009,20(6):1329-1336.
    [6] 俞月凤,何铁光,宋同清,等.桂西北喀斯特地区石灰土养分空间变异特征[J].生态学报,2018,38(8):2906-2914.
    [7] 何宁,宋同清,彭晚霞,等.喀斯特峰丛洼地次生林土壤有机碳的剖面分布特征[J].植物营养与肥料学报,2012,18(2):374-381.
    [8] 袁道先.岩溶石漠化问题的全球视野和我国的治理对策与经验[J].草业科学,2008,25(9):19-25.
    [9] 许路艳,王嘉学,余洁芳,等.滇东山原红壤退化过程中的土壤剖面有机质与养分变异[J].土壤,2015,47(5):947-952.
    [10] 吕贻忠,李保国,崔燕.不同植被群落下土壤有机质和速效磷的小尺度空间变异[J].中国农业科学,2006,39(8):1581-1588.
    [11] Barbour M,Burk G,Pitts J H.Terrestrial Plant Ecology[M].London:the Benjamin Publishing Company,1980.
    [12] 宋同清,彭晚霞,杜虎,等.中国西南喀斯特石漠化时空演变特征、发生机制与调控对策[J].生态学报,2014,34(18):5328-5341.
    [13] 方运霆,莫江明,Sandra B,等.鼎湖山自然保护区土壤有机碳贮量和分配特征[J].生态学报,2004,24(1):135-142.
    [14] Batjes N H.Total carbon and nitrogen in the soils of world[J].European Journal of Soil Science,2014,65(1):2-3.
    [15] Shaffer M J,Mal W,Hansen S.Modeling carb on and nitrogen dynamics for soil management[M].Boca Raton,USA:Lewis Publishers,2001.
    [16] Munson S A,Carey A E.Organic matter sources and transport in an agriculturally dominated temperate watershed[J].Applied Geochemistry,2004,19(7):1111-1121.
    [17] 李忠佩,王效举.小区域水平土壤有机质动态变化的评价与分析[J].地理科学,2000,20(2):182-187.
    [18] 邵学新,杨文英,吴明,等.杭州湾滨海湿地土壤有机碳含量及其分布格局[J].应用生态学报,2007,18(7):1425-1431.
    [19] Bollag J M,Strotzky G.Soil Biochemistry[M].New York:Marcel Dekker,1990.
    [20] 邸欣月,安显金,董慧,等.贵州喀斯特区域土壤有机质的分布和演化特征[J].地球与环境,2015,43(6):697-708.
    [21] 李金芬,程积民,刘伟,等.黄土高原云雾山草地土壤有机碳、全氮分布特征[J].草地学报,2010,18(5):661-668.
    [22] 张全军,于秀波,钱建鑫,等.鄱阳湖南矶湿地优势植物群落及土壤有机质和营养元素分布特征[J].生态学报,2012,32(12):3656-3669.
    [23] 耿增超,姜林,李珊珊,等.祁连山中段土壤有机碳和氮素的剖面分布[J].应用生态学报,2011,22(3):665-672.
    [24] 程杰,高亚军.云雾山封育草地土壤养分变化特征[J].草地学报,2007,15(3):274-278.
    [25] 邹丽娜,周志宇,颜淑云,等.玛曲高寒草地土壤养分对不同利用方式的响应[J].中国草地学报,2009,31(6):80-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700