用户名: 密码: 验证码:
荷花不同品种花瓣中挥发性成分的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on volatile components in petals of different cultivars of Nelumbo nucifera
  • 作者:牛叶青 ; 张芳 ; 李柳燕 ; 金奇江 ; 王彦杰 ; 徐迎春
  • 英文作者:NIU Yeqing;ZHANG Fang;LI Liuyan;JIN Qijiang;WANG Yanjie;XU Yingchun;College of Horticulture,Nanjing Agricultural University;
  • 关键词:荷花 ; 顶空固相微萃取-气质联用(HS-SPME-GC-MS)技术 ; 挥发性成分 ; 释香成分 ; 相对含量
  • 英文关键词:Nelumbo nucifera Gaertn.;;headspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) technology;;volatile component;;aroma component;;relative content
  • 中文刊名:ZWZY
  • 英文刊名:Journal of Plant Resources and Environment
  • 机构:南京农业大学园艺学院;
  • 出版日期:2019-02-25
  • 出版单位:植物资源与环境学报
  • 年:2019
  • 期:v.28
  • 基金:江苏省农业科技自主创新资金项目[CX(16)1024];; 中央高校基本科研业务费专项资金(KJQN201659)
  • 语种:中文;
  • 页:ZWZY201901008
  • 页数:10
  • CN:01
  • ISSN:32-1339/S
  • 分类号:54-63
摘要
利用顶空固相微萃取-气质联用(HS-SPME-GC-MS)技术对荷花(Nelumbo nucifera Gaertn.)20个品种(包括5种花色和4种瓣型)花瓣中挥发性成分及其相对含量进行了检测,并基于释香成分对荷花20个品种进行了聚类分析。结果显示:荷花20个品种花瓣中共检测出69个挥发性成分,包括烷烃类化合物18个,烯烃类化合物24个,醇类化合物8个,酯类化合物6个,酮类、醛类、胺类和酸类化合物各2个,其他化合物5个,其中,释香成分42个。荷花20个品种花瓣中烷烃类、烯烃类和醇类化合物的相对含量较高,且在20个品种中均有检出;而酯类、酮类和醛类化合物的相对含量较低,且仅在个别品种中检出。荷花不同品种间花瓣中挥发性成分的数量和相对含量存在差异。‘大洒锦’(‘Dasajin’)、‘16-A10-1’和‘16-A10-27’花瓣中挥发性成分数量较多,分别为27、21和20种。‘大洒锦’、‘伯里夫人’(‘Bolifuren’)和‘子夜’(‘Ziye’)花瓣中挥发性成分的相对含量较高,分别为93.58%、91.92%和91.79%。‘稼先莲’(‘Jiaxianlian’)、‘子夜’、‘中国红·井冈山’(‘Zhongguohong Jinggangshan’)、‘27-1’、‘16-A9-55’、‘16-A9-49’、‘珠峰翠影’(‘Zhufengcuiying’)、‘金太阳’(‘Jintaiyang’)、‘秣陵秋色’(‘Molingqiuse’)和‘大洒锦’花瓣中的主要挥发性成分为正十六烷,‘中国红·北京’(‘Zhongguohong Beijing’)、‘16-A10-30’、‘16-A10-27’、‘39-1’、‘逸仙莲’(‘Yixianlian’)、‘伯里夫人’和‘16-A9-44’花瓣中的主要挥发性成分为正十五烷,‘16-A10-1’、‘红台莲’(‘Hongtailian’)和‘艾江南’(‘Aijiangnan’)花瓣中的主要挥发性成分分别为1-十六烯、α-石竹烯和1-石竹烯。聚类分析结果显示:‘子夜’、‘红台莲’、‘16-A10-27’、‘秣陵秋色’和‘艾江南’聚为A组,‘逸仙莲’单独聚为C组,其他14个品种聚为B组。1-石竹烯、α-石竹烯和α-松油醇对A组荷花品种的香气具有重要贡献,桧烯、反-7-十六烯和顺-5-十八烯对B组荷花品种的香气具有重要贡献,α-萜品烯对C组荷花品种的香气具有重要贡献。综合研究结果认为:荷花花瓣中的释香成分与花色和瓣型无明显关联,不同品种花瓣中特有的释香成分可能对其香气具有决定作用。
        The volatile components and their relative contents in petals of 20 cultivars(including five flower colors and four petal types) of Nelumbo nucifera Gaertn. were detected by using headspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) technology, and cluster analysis on 20 cultivars of N. nucifera was carried out based on aroma components. The results show that 69 volatile components in petals of 20 cultivars of N. nucifera are detected, including 18 alkanes, 24 alkenes, 8 alcohols, 6 esters, 2 ketones, 2 aldehydes, 2 amines, 2 acids, and 5 others, in which, there are 42 aroma components. Relative contents of alkanes, alkenes, and alcohols in petals of 20 cultivars of N. nucifera are high, and all are detected in 20 cultivars; while those of esters, ketones, and aldehydes are low, and are detected only in several cultivars. There are differences in numbers and relative contents of volatile components in petals of different cultivars of N. nucifera. Numbers of volatile components in petals of ‘Dasajin', ‘16-A10-1', and ‘16-A10-27' are large, with 27, 21, and 20, respectively. Relative contents of volatile components in petals of ‘Dasajin', ‘Bolifuren', and ‘Ziye' are high, with 93.58%, 91.92%, and 91.79%, respectively. Main volatile component in petals of ‘Jiaxianlian', ‘Ziye', ‘Zhongguohong Jinggangshan', ‘27-1', ‘16-A9-55', ‘16-A9-49', ‘Zhufengcuiying', ‘Jintaiyang', ‘Molingqiuse', and ‘Dasajin' is n-hexadecane, that in petals of ‘Zhongguohong Beijing', ‘16-A10-30', ‘16-A10-27', ‘39-1', ‘Yixianlian', ‘Bolifuren', and ‘16-A9-44' is n-pentadecane, and those in petals of ‘16-A10-1', ‘Hongtailian', and ‘Aijiangnan' are 1-hexadecene, α-caryophyllene, and 1-caryophyllene, respectively. The result of cluster analysis shows that ‘Ziye', ‘Hongtailian', ‘16-A10-27', ‘Molingqiuse', and ‘Aijiangnan' are clustered into Group A, ‘Yixianlian' is clustered into Group C alone, other 14 cultivars are clustered into Group B. 1-caryophyllene, α-caryophyllene, and α-terpineol have an important contribution on aroma of cultivars of N. nucifera in Group A, sabinene, 7-hexadecylene-(E), and 5-octadecylene-(Z) do in Group B, and α-terpinene does in Group C. The comprehensive research result shows that there is no obvious association of aroma components with flower color and petal type of N. nucifera, and specific aroma components in petals of different cultivars play a decisive role in their aroma.
引文
[1] 王其超, 张行言. 中国荷花品种图志[M]. 北京: 中国林业出版社, 2005: 2-81.
    [2] DUDAREVA N, PICHERSKY E. Biochemical and molecular genetic aspects of floral scents[J]. Plant Physiology, 2000, 122(3): 627-633.
    [3] KNUDSEN J T, TOLLSTEN L. Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa[J]. Botanical Journal of the Linnean Society, 1993, 113(3): 263-284.
    [4] 刘布鸣, 莫建光. 实用芳香精油图谱[M]. 南宁: 广西科学技术出版社, 2016: 1-7.
    [5] KNUDSEN J T, ERIKSSON R, GERSHENZON J. Diversity and distribution of floral scent[J]. The Botanical Review, 2006, 72(1): 1-120.
    [6] 叶灵军. 古老月季品种主要香气成分探究[J]. 现代园艺, 2017(1): 16.
    [7] 张继, 马君义, 黄爱仑, 等. 千里香杜鹃挥发性成分的分析研究[J]. 园艺学报, 2002, 29(4): 386-388.
    [8] 赵印泉, 潘会堂, 张启翔, 等. 梅花花朵香气成分时空动态变化的研究[J]. 北京林业大学学报, 2010, 32(4): 201-206.
    [9] 刘建军, 耶兴元, 郭桂义, 等. 茉莉花香气分析及收集方法研究进展[J]. 河南农业, 2011(3下): 58, 60.
    [10] 张辉秀, 胡增辉, 冷平生, 等. 不同品种百合花挥发性成分定性与定量分析[J]. 中国农业科学, 2013, 46(4): 790-799.
    [11] 邹晶晶, 蔡璇, 曾祥玲, 等. 桂花不同品种开花过程中香气活性物质的变化[J]. 园艺学报, 2017, 44(8): 1517-1534.
    [12] 张莹, 李辛雷, 王雁, 等. 文心兰不同花期及花朵不同部位香气成分的变化[J]. 中国农业科学, 2011, 44(1): 110-117.
    [13] 韩丛聪, 荀守华, 姜天华, 等. 刺槐属6种材料鲜花芳香成分分析[J]. 园艺学报, 2017, 44(3): 557-565.
    [14] 徐双双, 赵先恩, 刘玉芹, 等. 顶空固相微萃取-气质联用技术分析5种荷花的挥发性成分[J]. 分析试验室, 2011, 30(6): 54-56.
    [15] 邓娇, 郑金萍. 6种莲花花瓣的挥发性物质成分的分析[J]. 贵州师范大学学报(自然科学版), 2017, 35(4): 56-63.
    [16] 包秀霞, 廉勇, 包秀平. 植物花香气成分提取方法的比较研究进展[J]. 北方农业学报, 2016, 44(5): 126-130.
    [17] 王学敬, 李聪, 王玉峰, 等. SPME-GC-MS法分析德州扒鸡挥发性风味成分的条件优化及成分分析[J]. 南京农业大学学报, 2016, 39(3): 495-501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700