用户名: 密码: 验证码:
低热值燃气轮机烧嘴烧损问题的数值计算模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation Study of Low-heating-value Gas Turbine Nozzle Melting
  • 作者:秦晔 ; 张波 ; 闫姝 ; 穆延非 ; 史绍平
  • 英文作者:QIN Ye;ZHANG Bo;YAN Shu;MU Yanfei;SHI Shaoping;State Key Laboratory of Coal-Based Clean Energy, Huaneng Clean Energy Research Institute;
  • 关键词:整体煤气化联合循环(IGCC) ; 低热值燃气轮机 ; 计算流体力学 ; 数值计算模型 ; 烧嘴烧损
  • 英文关键词:integrated gasification combined cycle(IGCC);;low-heating-value gas turbine;;computational fluid dynamics (CFD);;numerical model;;nozzle melting
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:中国华能集团清洁能源技术研究院有限公司煤基清洁能源国家重点实验室;
  • 出版日期:2017-12-05 11:19
  • 出版单位:中国电机工程学报
  • 年:2018
  • 期:v.38;No.602
  • 基金:中国华能集团公司科学技术项目(CERI/TS-16-HJK02)~~
  • 语种:中文;
  • 页:ZGDC201815016
  • 页数:9
  • CN:15
  • ISSN:11-2107/TM
  • 分类号:155-162+342
摘要
整体煤气化联合循环的动力核心是低热值燃气轮机。针对其烧嘴烧损问题,结合低热值燃烧器的结构特点、低热值燃料的特性及低热值燃气轮机实际运行情况,采用计算流体力学(computational fluid dynamic,CFD)方法建立了该低热值燃气轮机燃烧室和燃烧器的数值模型,分析了燃烧器烧嘴烧损的主要原因,发现是因为少量合成气从稳焰孔流出后,被空气挤压,在靠近烧嘴壁面的位置燃烧所造成的。为解决这一问题,提出在稳焰孔上方增加一圈遮焰环的解决方案,并用CFD模型进行校验。结果显示遮焰环方案烧嘴的最高壁面温度由原方案的1666 K降低至1076K,远低于烧嘴材料烧损的温度。
        Low-heating-value gas turbine is the core equipment of an integrated gasification combined cycle(IGCC) plant. Aiming at serious burner nozzles melting of the low-heating-value gas turbine, computational fluid dynamics(CFD) was employed to construct the numerical model of the combustor and burner to analyze the reasons, considering the structure of the low-heating-value burner, fuel characteristics, and actual operation condition of the gas turbine. The CFD model shows that a small amount of syngas flows out of the flame stabilization holes of the nozzle. Then, it was pressed to the nozzle wall by air and burns there, which leads to high temperature regions and possible melting of the nozzle. To solve this problem, adding a baffle ring above the flame stabilization holes was proposed. The solution was examined by the CFD numerical model and shows that the highest nozzle wall temperature reduces from 1666 K down to 1076 K, far blew the melting temperature.
引文
[1]黄雪丽,陈鸿伟,孙永斌.400MW整体煤气化联合循环机组脱硝方案比较[J].电力建设,2014,35(2):80-85.Huang Xueli,Chen Hongwei,Sun Yongbin.Comparison of denitration schemes in 400MW IGCC plant[J].Electric Power Construction,2014,35(2):80-85(in Chinese).
    [2]郭培卿,葛冰.合成气非预混燃烧的数值模拟[J].计算机辅助工程,2014,23(4):57-60.Guo Peiqing,Ge Bing.Numerical simulation on syngas non-premixed combustion[J].Computer Aided Engineering,2014,23(4):57-60(in Chinese)
    [3]张永生,穆克进,张哲巅,等.不同空气和燃料旋流强度下合成气稀释扩散火焰特性研究[J].中国电机工程学报,2009,29(2):63-68.Zhang Yongsheng,Mu Kejin,Zhang Zhedian,et al.Research on syngas diluted diffuse flame characteristics under different swirling intensity of air and fuel[J].Proceedings of the CSEE,2009,29(2):63-68(in Chinese).
    [4]张学镭,王松岭,陈海平,等.燃烧中低热值燃料时燃气轮机系统的应对方案及其性能分析[J].中国电机工程学报,2006,26(19):110-116.Zhang Xuelei,Wang Songling,Chen Haiping,et al.Adjustment strategy and performance analysis of gas turbine system when burning medium and low heat value fuel[J].Proceedings of the CSEE,2006,26(19):110-116(in Chinese).
    [5]张建府.燃用低热值合成气燃气轮机性能特点及优化[J].电力建设,2011,32(9):74-77.Zhang Jianfu.Performance characteristics and optimization of gas turbine for firing low-heating value syngas[J].Electric Power Construction,2011,32(9):74-77(in Chinese).
    [6]蔡志杰.IGCC燃气轮机与常规燃气轮机的差异及相关的改造[J].发电设备,2014,28(2):115-118.Cai Zhijie.Difference between IGCC gas turbine and conventional gas turbine and relevant retrofits[J].Power Equipment,2014,28(2):115-118(in Chinese).
    [7]黄志慧,崔耀欣.SGT5-2000E(LC)IGCC燃气轮机结构介绍[J].热力透平,2009,38(2):118-121.Huang Zhihui,Cui Yaoxin.Introduction of SGT5-2000E(LC)IGCC gas turbine structure[J].Thermal Turbine,2009,38(2):118-121(in Chinese).
    [8]Lai M K,Reynolds R S,Armstrong J.CFD-based,parametric,design tool for gas turbine combustors from compressor deswirl exit to turbine inlet[C]//Proceedings of ASME Turbo Expo 2002:Power for Land,Sea,and Air.Amsterdam,The Netherlands:ASME,2002:545-552.
    [9]Wegner B,Gruschka U,Krebs W,et al.CFD prediction of partload CO emissions using a two-timescale combustion Model[C]//Proceedings of ASME Turbo Expo2010:Power for Land,Sea,and Air.Glasgow,UK:ASME,2010:103-112.
    [10]刘网扣,朱志劼,谢岳生,等.某重型燃气轮机燃烧室燃烧性能的数值模拟[J].燃气轮机技术,2016,29(4):44-48.Liu Wangkou,Zhu Zhijie,Xie Yuesheng,et al.Numerical simulation of a heavy-duty gas turbine combustion performance[J].Gas Turbine Technology,2016,29(4):44-48(in Chinese).
    [11]王朝晖,王成军,王丹丹,等.燃气轮机燃烧室燃烧气体燃料的数值模拟[J].沈阳航空工业学院学报,2010,27(2):11-14.Wang Zhaohui,Wang Chengjun,Wang Dandan,et al.Combusting gas fuel simulation for the combustor of gas turbine engine[J].Journal of Shenyang Institute of Aeronautical Engineering,2010,27(2):11-14(in Chinese).
    [12]郭培卿,臧述升,葛冰.合成气燃烧数值模拟与验证[J].计算机与应用化学,2014,31(1):1-4.Guo Peiqing,Zang Shusheng,Ge Bing.Numerical simulation and validation of syn-gas combustion[J].Computers and Applied Chemistry,2014,31(1):1-4(in Chinese).
    [13]付忠广,卢可,周扬,等.氮气稀释富氢合成气高压燃烧特性数值模拟[J].热力发电,2014,43(11):19-23.Fu Zhongguang,Lu Ke,Zhou Yang,et al.Numerical study on combustion characteristics of nitrogen diluted hydrogen-rich syngas at high pressures[J].Thermal Power Generation,2014,43(11):19-23(in Chinese).
    [14]崔玉峰,徐纲,聂超群,等.数值模拟在合成气燃气轮机燃烧室设计中的应用[J].中国电机工程学报,2006,26(16):109-116.Cui Yufeng,Xu Gang,Nie Chaoqun,et al.Application of numerical simulation in the design of gas turbine combustor for burning syngas[J].Proceedings of the CSEE,2006,26(16):109-116(in Chinese).
    [15]徐纲,聂超群,黄伟光,等.燃气轮机燃烧室燃烧天然气和燃烧中低热值煤气的比较[J].工程热物理学报,2003,24(1):141-144.Xu Gang,Nie Chaoqun,Huang Weiguang,et al.Comparison of buning nature gas and low heat synthesize gas in gas turbine combustor[J].Journal of Engineering Thermophysics,2003,24(1):141-144(in Chinese).
    [16]赵晓燕,李祥晟,丰镇平,等.燃气轮机低热值合成气燃烧室内三维湍流流动的数值模拟研究[J].动力工程,2009,29(4):330-334.Zhao Xiaoyan,Li Xiangsheng,Feng Zhenping,et al.Numerical simulation research on three dimensional turbulence flow in a gas turbine combustor burning low heat value syngas[J].Journal of Power Engineering,2009,29(4):330-334(in Chinese).
    [17]许东灏,穆延非,陈新明,等.不同惰性组分稀释合成气对燃气–蒸汽联合循环的效益分析[J].中国电机工程学报,2017,37(14):4138-4146,4293.Xu Donghao,Mu Yanfei,Chen Xinming,et al.Effect of syngas dilution using different inert species on gas turbine combined cycle[J].Proceedings of the CSEE,2017,37(14):4138-4146,4293(in Chinese).
    [18]林清华,张哲巅,肖云汉.合成气燃烧室NOx排放估算方法分析[J].燃气轮机技术,2013,26(1):9-14,26.Lin Qinghua,Zhang Zhedian,Xiao Yunhan.Analysis of the methods for estimating NOx emissions from syngas combustor[J].Gas Turbine Technology,2013,26(1):9-14,26(in Chinese).
    [19]Benim A C,Iqbal S,Joos F,et al.Numerical analysis of turbulent combustion in a model swirl gas turbine combustor[J].Journal of Combustion,2016,2016:2572035.
    [20]L?rstad D,Lindholm A,Pettersson J,et al.Siemens SGT-800 industrial gas turbine enhanced to 50MW:combustor design modifications,validation and operation experience[C]//Proceedings of ASME Turbo Expo 2013:Turbine Technical Conference and Exposition.San Antonio,Texas,USA:ASME,2013:V01BT04A038.
    [21]Meloni R.Pollutant emission validation of a heavy-duty gas turbine burner by CFD modeling[J].Machines,2013,1(3):81-97.
    [22]陈杏芳.Nimonic 80A热变形和热处理过程中的晶粒结构控制[D].上海:上海交通大学,2012.Chen Xingfang.Grain structure control during hot deformation and heat treatment in nimonic 80A[D].Shanghai:Shanghai Jiao Tong University,2012(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700