用户名: 密码: 验证码:
上调miR-181a抑制香烟提取物诱导的支气管上皮细胞致炎因子生成与collagen IV、fibronectin和α-SMA表达
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Up-regulation of miR-181a attenuates releases of CSE-induced pro-inflammatory factors and expression of collagen IV, fibronectin and α-SMA in human bronchial epithelial cells
  • 作者:梁珍珍 ; 解玉东 ; 张艳莉 ; 韩丽丽 ; 吕燕平
  • 英文作者:LIANG Zhen-zhen;XIE Yu-dong;ZHANG Yan-li;HAN Li-li;L Yan-ping;Department of Respiratory Medicine,Zhoukou Central Hospital;
  • 关键词:微小RNA-181a ; 慢性阻塞性肺疾病 ; 气道炎症 ; 气道重塑 ; NF-κB/TGF-β1/Smad3信号通路
  • 英文关键词:MicroRNA-181a;;Chronic obstruction pulmonary disease;;Airway inflammation;;Airway remodeling;;NF-κB/TGF-β1/Smad3 signaling pathway
  • 中文刊名:ZBLS
  • 英文刊名:Chinese Journal of Pathophysiology
  • 机构:周口市中心医院呼吸科;
  • 出版日期:2019-03-21 18:54
  • 出版单位:中国病理生理杂志
  • 年:2019
  • 期:v.35
  • 基金:河南省医学科技攻关计划项目(No.201401011)
  • 语种:中文;
  • 页:ZBLS201903020
  • 页数:6
  • CN:03
  • ISSN:44-1187/R
  • 分类号:124-129
摘要
目的:探讨微小RNA-181a(miR-181a)对香烟提取物(cigarette smoke extract,CSE)诱导的人支气管上皮细胞(human bronchial epithelial cells, HBECs)致炎因子生成与IV型胶原蛋白(collagen IV)、纤连蛋白(fibronectin)和α-平滑肌肌动蛋白(α-SMA)表达的影响,并分析其可能的机制。方法:RT-qPCR检测CSE诱导下HBECs中miR-181a的表达情况。转染miR-181a mimic后经ELISA检测肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白细胞介素1β(interleukin-1β,IL-1β)、IL-6和转化生长因子β1(transforming growth factor-β1,TGF-β1)的水平;Western blot检测collagen IV、fibronectin和α-SMA的表达;并进一步评估NF-κB/TGF-β1/Smad3信号通路的活性。结果:CSE可显著增加HBECs中致炎症因子IL-1β、IL-6、TNF-α和TGF-β1的生成,显著上调collagen IV、fibronectin和α-SMA的表达,同时细胞内miR-181a的表达明显降低(P<0.05);转染miR-181a mimic可显著抑制CSE诱导的HBECs致炎因子生成及collagen IV、fibronectin和α-SMA表达(P<0.05)。此外,Western blot的结果显示转染miR-181a mimic可抑制CSE诱导的NF-κB/TGF-β1/Smad3信号活性(P<0.05)。结论:上调miR-181a表达可部分逆转CSE诱导的HBECs致炎因子的释放及collagen IV、fibronectin和α-SMA表达,其作用机制可能与抑制NF-κB/TGF-β1/Smad3信号通路的活化有关。
        AIM: To investigate the effect and potential mechanism of microRNA-181 a(miR-181 a) on cigarette smoke extract(CSE)-induced the productions of pro-inflammatory factors and the expression of collagen IV, fibronectin and α-smooth muscle actin(α-SMA) in human bronchial epithelial cells(HBECs). METHODS: CSE-induced miR-181 a expression was detected by RT-qPCR in the HBECs. After tansfected with miR-181 a mimic, the releases of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), IL-6 and transforming growth factor-β1(TGF-β1) were measured by ELISA, the protein expression of collagen IV, fibronectin and α-SMA was determined by Western blot. The activation of NF-κB/TGF-β1/Smad3 pathway was also evaluated by Western blot. RESULTS: CSE increased the levels of TNF-α, IL-1β, IL-6 and TGF-β1 and the expression of collagen IV, fibronectin and α-SMA, and decreased the expression of miR-181 a in the HBECs(P<0.05). However, transfected with miR-181 a mimic partially prevented the releases of TNF-α, IL-1β, IL-6 and TGF-β1, and inhibited the expression of collagen IV, fibronectin and α-SMA(P<0.05). Additionally, the activation of NF-κB/TGF-β1/Smad3 evoked by CSE was attenuated after transfected with miR-181 a mimic. CONCLUSION: Up-regulation of miR-181 a prevents the releases of CSE-induced pro-inflammatory factors and expression of collagen IV, fibronectin and α-SMA in the HBECs, and its mechanism may be related to the inhibition of NF-κB/TGF-β1/Smad3 pathway.
引文
[1] Mar??a R, Rodrigues DM, Dias M, et al. Classification of chronic obstructive pulmonary disease (COPD) according to the new Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017: comparison with GOLD 2011[J]. COPD, 2018,15(1):21-26.
    [2] Fan M, Yu C, Guo Y, et al. Effect of total, domain-specific, and intensity-specific physical activity on all-cause and cardiovascular mortality among hypertensive adults in China[J]. J Hypertens, 2018, 36(4):793-800.
    [3] Ding X, Yu C, Liu Y, et al. Chronic obstructive sleep apnea accelerates pulmonary remodeling via TGF-β/miR-185/CoLA1 signaling in a canine model[J]. Oncotarget, 2016, 7(36):57545-57555.
    [4] Wang Y, Xu YM, Zou YQ, et al. Identification of differential expressed PE exosomal miRNA in lung adenocarcinoma, tuberculosis, and other benign lesions[J]. Medicine (Baltimore), 2017, 96(44):e8361.
    [5] Yang Y, Hu Z, Zhou Y, et al. The clinical use of circulating microRNAs as non-invasive diagnostic biomarkers for lung cancers[J]. Oncotarget, 2017, 8(52):90197-90214.
    [6] Conickx G, Avila Cobos F, van den Berge M, et al. microRNA profiling in lung tissue and bronchoalveolar lavage of cigarette smoke-exposed mice and in COPD patients: a translational approach[J]. Sci Rep, 2017, 7(1):12871.
    [7] Chen H, Xu X, Cheng S, et al. Small interfering RNA directed against microRNA-155 delivered by a lentiviral vector attenuates asthmatic features in a mouse model of allergic asthma[J]. Exp Ther Med, 2017, 14(5):4391-4396.
    [8] Fan L, Yu X, Huang Z, et al. Analysis of microarray-identified genes and microRNAs associated with idiopathic pulmonary fibrosis[J]. Mediators Inflamm, 2017, 2017:1804240.
    [9] Xie L, Wu M, Lin H, et al. An increased ratio of serum miR-21 to miR-181a levels is associated with the early pathogenic process of chronic obstructive pulmonary di-sease in asymptomatic heavy smokers[J]. Mol Biosyst, 2014, 10(5):1072-1081.
    [10] Kent LM, Fox SM, Farrow SN, et al. The effects of dexamethasone on cigarette smoke induced gene expression changes in COPD macrophages[J]. Int Immunopharmacol, 2010, 10(1):57-64.
    [11] Sonkoly E, St?hle M, Pivarcsi A. MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation[J]. Semin Cancer Biol, 2008, 18(2):131-140.
    [12] Jiang K, Guo S, Zhang T, et al. Downregulation of TLR4 by miR-181a provides negative feedback regulation to lipopolysaccharide-induced inflammation[J]. Front Pharmacol, 2018, 9:142.
    [13] Zhang P, Xin X, Fang L, et al.HMGB1 mediates Aspergillus fumigatus-induced inflammatory response in alveolar macrophages of COPD mice via activating MyD88/NF-κB and syk/PI3K signalings[J]. Int Immunopharmacol, 2017, 53:125-132.
    [14] Schuliga M. NF-κB signaling in chronic inflammatory airway disease[J]. Biomolecules, 2015, 5(3):1266-1283.
    [15] Di Stefano A, Sangiorgi C, Gnemmi I, et al. TGF-β signaling pathways in different compartments of the lower airways of patients with stable COPD[J]. Chest, 2018, 153(4):851-862.
    [16] Shin NR, Park JW, Lee IC, et al. Melatonin suppresses fibrotic responses induced by cigarette smoke via downre-gulation of TGF-β1[J]. Oncotarget, 2017, 8(56):95692-95703.
    [17] Li Y, Li JS, Li WW, et al. Long-term effects of three Tiao-Bu Fei-Shen therapies on NF-κB/TGF-β1/smad2 signaling in rats with chronic obstructive pulmonary disease[J]. BMC Complement Altern Med, 2014, 14:140.
    [18] Guan S, Xu W, Han F, et al. Ginsenoside Rg1 attenuates cigarette smoke-induced pulmonary epithelial-mesenchymal transition via inhibition of the TGF-β1/Smad pathway[J]. Biomed Res Int, 2017, 2017:7171404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700