用户名: 密码: 验证码:
基于空间连杆机构实现“8”字形运动的扑翼机的设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of Flapping Machine for the “8” Zigzag Movement Based on Spatial Linkage Mechanism
  • 作者:姜森 ; 郝永平 ; 李伦 ; 郭梦辉
  • 英文作者:JIANG Sen;HAO Yongping;LI Lun;GUO Menghui;College of Mechanical Engineering, Shenyang Ligong University;
  • 关键词:扑翼 ; 扭转耦合 ; 飞行器 ; 空间连杆机构 ; “8”字形轨迹
  • 英文关键词:Flapping wing;;Torsional coupling;;Aircraft;;Space link mechanism;;"8" zigzag trajectory
  • 中文刊名:JCYY
  • 英文刊名:Machine Tool & Hydraulics
  • 机构:沈阳理工大学机械工程学院;
  • 出版日期:2019-07-15
  • 出版单位:机床与液压
  • 年:2019
  • 期:v.47;No.487
  • 基金:国家863计划资助项目(2015AA042701);; 总装基金项目(9140A05020115QT28057)
  • 语种:中文;
  • 页:JCYY201913018
  • 页数:5
  • CN:13
  • ISSN:44-1259/TH
  • 分类号:85-89
摘要
通过观察鸟类飞行时翅膀的运动轨迹,并基于空间连杆机构的理论,设计了一种可实现翅膀两个自由度运动的扑翼机构,通过两个空间连杆机构的相互配合,使翼尖处成功实现了空间"8"字形的运动轨迹,并可以改变扭转角而实现改变攻角的值,为之后仿生扑翼飞行器的设计提供了宝贵的经验。
        By observing the motion trajectory of birds flying wings and based on the theory of spatial linkage mechanism, a flapping wing mechanism is designed which can realize wings of two degrees of freedom(2-DOF) movement. By mutually use the two spatial linkage together, the wing tip was made to implement in the trajectories of space "8" glyph, and by changing the torsion angle, change the value of the angle of attack could be realized. For the design of the bionic flapping wing flight vehicle, it provides valuable experience.
引文
[1]阮龙欢,侯宇,李诗雷.两自由度仿生扑翼飞行机器人设计与运动分析[J].机械设计与制造,2017(6):241-244.RUAN L H,HOU Y,LI S L.Design and Kinematic Analysis of A 2-DOF Bionic Flapping-wing Flying Robot[J].Machinery Design & Manufacture,2017(6):241-244.
    [2]JAHANBIN Z,GHAFARI A S,EBRAHIMI A.Multi-body Simulation of a Flapping-wing Robot Using an Efficient Dynamical Model[J].Journal of the Brazilian Society of Mechanical Sciences and Engineer,2015,38(1):133-149.
    [3]MICHEAL J M,FRANCIS M S.Micro Air Vehicles-Toward a New Dimension in Flight[J].http://www.arpa.gov/tto/MAV/mav_auvsi.html,1997.
    [4]曾锐,昂海松.仿鸟复合振动的扑翼气动分析[J].南京航空航天大学学报,2003,35(1):6-12.ZENG R,ANG H S.Aerodynamic Computation of Flapping-wing Simulating Bird Wings[J].Journal of Nanjing University of Aeronautics & Astronautics,2003,35(1):6-12.
    [5]王琨琦,陈世杰,刘颖.仿生扑翼飞行器翅翼扭转机构设计[J].西安工业大学学报,2015,35(2):125-129.WANG K Q,CHEN S J,LIU Y.Design of Twisting Mechanism of Flapping-wing Micro Air Vehicle[J].Journal of Xi'an Technological University,2015,35(2):125-129.
    [6]杨可桢,程光蕴,李仲生.机械设计基础[M].5版.北京:高等教育出版社,2013.
    [7]杨永刚,苏汉平.扑翼飞行器驱动机构的优化设计与仿真[J].机械传动,2017,41(1):122-126.YANG Y G,SU H P.Optimization Design and Simulation for Driving Mechanism of Flapping-wing Air Vehicle[J].Journal of Mechanical Transmission,2017,41(1):122-126.
    [8]程友联,吴晓红.按最佳传动角设计偏置曲柄摇杆机构的闭式解[J].机械设计与研究,2009,25(6):28-30.CHENG Y L,WU X H,Closed-form Solution to the Design of Offset Crank-rocker Mechanism by The Optimun Transmission Angle[J].Machine Design and Research,2009,25(1):6-12.
    [9]殷博超,张占国,张兴华.基于传动角和极位夹角设计曲柄摇杆机构[J].现代制造技术与装备,2017(6):52-53.YIN B C,ZHANG Z G,ZHANG X H.Crank and Rocker Mechanism is Designed Based on Transmission Angle and Pole Angle[J].Modern Manufacturing Technology and Equipment,2017(6):52-53.
    [10]冀晓红.按最佳传动性能设计曲柄摇杆机构[J].机械设计与制造,2009(6):83-84.JI X H.Designing the Plane-rocker Mechanism by the Optimum Drive Angle[J].Machinery Design & Manufacture,2009(6):83-84.
    [11]杜志强,葛述卿,房建峰,等.基于MATLAB语言的机构设计与分析[M].上海:上海科学技术出版社,2011.
    [12]刘浩,韩晶.MATLAB完全自学一本通[M].北京:电子工业出版社,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700