用户名: 密码: 验证码:
Reconciling performance and interpretability in customer churn prediction using ensemble learning based on generalized additive models
详细信息查看全文 | 推荐本文 |
摘要
To build a successful customer churn prediction model, a classification algorithm should be chosen that fulfills two requirements: strong classification performance and a high level of model interpretability. In recent literature, ensemble classifiers have demonstrated superior performance in a multitude of applications and data mining contests. However, due to an increased complexity they result in models that are often difficult to interpret. In this study, GAMensPlus, an ensemble classifier based upon generalized additive models (GAMs), in which both performance and interpretability are reconciled, is presented and evaluated in a context of churn prediction modeling. The recently proposed GAMens, based upon Bagging, the Random Subspace Method and semi-parametric GAMs as constituent classifiers, is extended to include two instruments for model interpretability: generalized feature importance scores, and bootstrap confidence bands for smoothing splines. In an experimental comparison on data sets of six real-life churn prediction projects, the competitive performance of the proposed algorithm over a set of well-known benchmark algorithms is demonstrated in terms of four evaluation metrics. Further, the ability of the technique to deliver valuable insight into the drivers of customer churn is illustrated in a case study on data from a European bank. Firstly, it is shown how the generalized feature importance scores allow the analyst to identify the relative importance of churn predictors in function of the criterion that is used to measure the quality of the model predictions. Secondly, the ability of GAMensPlus to identify nonlinear relationships between predictors and churn probabilities is demonstrated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700