用户名: 密码: 验证码:
Coarse-grained kinetic modelling of bilayer heterojunction organic solar cells
详细信息查看全文 | 推荐本文 |
摘要
The on-lattice kinetic Monte Carlo (KMC) method provides a powerful tool to simulate the J-V properties of organic solar cells. However, the computational cost associated with charge injection may limits its applicability. In the attempt to overcome this limitation, we describe in this paper a coarse-grained numerical approach to photocurrent generation in bilayer heterojunction solar cells. Starting from the KMC algorithm, a self-consistent numerical procedure is proposed to find the steady-state solutions of the kinetic equations describing particle dynamics in one dimension across the layer thickness. Our model incorporates the generation, transport and recombinations of charge carriers, excitons, and electron/hole pairs, whose introduction is required to correctly describe interfacial phenomena at the coarse-grained level. A continuum model of the electrostatic interactions among charge carriers is proposed and used to compute their hopping rates during the simulation. The model is used to investigate the J-V properties of Cathode/PCBM/P3HT/PEDOT:PSS/ITO bilayer devices, showing that Fermi level pinning at the Cathode/PCBM interface must be invoked to accurately model the experimental behavior. From the fitting to the experimental J-V data, we conclude the short-circuit current density to be mainly associated with a high exciton diffusion length. The analogies and differences between our model and existing KMC and drift-diffusion approaches are also discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700