用户名: 密码: 验证码:
Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology
详细信息查看全文 | 推荐本文 |
摘要
The hierarchically mesoporous iron(III) trimesate MIL-100(Fe) with a zeolite-MTN topology is known as an advanced functional material that is biocompatible. In this work, the large scale synthesis of MIL-100(Fe) has been achieved by hydrothermal reactions using suitable conditions without HF for the large scale synthesis. Although such conditions are narrow, the concurrent change of iron precursor and increase in the concentration of reaction mixture give rise to a synergetic effect leading to an increase in the crystallinity of F-free MIL-100(Fe). This method, combined with two purification steps (solvent extraction and chemical treatment with NH4F) leads to a highly porous F-free material obtained throughout a very high space-time-yield (>1700 kg/m3 day). Possible formation mechanisms of MIL-100(Fe) under hydrothermal conditions have been proposed in terms of four steps such as hydrolysis, deprotonation, self-assembly, and polycondensation. The resulting material exhibits similar physicochemical properties to those of the one prepared in the presence of HF, except for a slight difference in sorption capacities of gases and liquid vapors corresponding to the difference of pore volume. Regardless of the use of HF, the purified MIL-100(Fe) possesses very high uptakes for both non-polar toluene and polar ethanol probe molecules due to the respective interactions with hydrophilic and hydrophobic sites in the framework. Finally, hydrophobicity measurements confirm that the dehydrated MIL-100(Fe) is more hydrophobic than conventional zeolite beta (SiO2/Al2O3 = 25) and commercial iron trimesate (Basolite F300) from BASF SE.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700