用户名: 密码: 验证码:
Modeling temperature-mediated fluctuation in colony size in the fire ant, Solenopsis invicta
详细信息查看全文 | 推荐本文 |
摘要
In the social insects, colony size is central to the survival of the queen. Two endogenous factors, worker longevity and queen's daily egg production, are known to determine maximum colony size. A third endogenous factor, duration of worker development from egg to adult, regulates the rate of colony growth. In this paper, we report findings from a simulation quantifying the effects of temperature on colony size in the fire ant, Solenopsis invicta. The monthly average temperature over a six year period for the panhandle of north Florida was interpolated to determine the effects of daily temperature on a queen's egg production, worker developmental time and worker longevity. Additional daily temperatures were simulated: 7 掳C higher and 7 掳C lower than daily temperatures for north Florida. As expected, colony size was the largest when annual temperatures were the highest across seasons, ranging from 57,000 to 187,000. Colony size at intermediate daily temperatures ranged from 14,000 to 103,000; small colonies recovered rapidly as temperatures warmed. Colony size at lower daily temperatures ranged from 14,000 to 21,000. Extended worker longevity at lower temperatures compensated for low egg production and longer developmental time. And vice versa, the queen's high rate of egg production and the shorter developmental time compensated for shorter worker longevity at high temperatures. Because the fire ant nest consists of a heat-collecting dome in which to incubate brood during cold weather, and deep chambers in which to cool workers during hot weather, colony size is likely to be higher and more stable than our simulation showed. The extended longevity of workers and queens at low temperatures, and perhaps their ability to hibernate below the permafrost, might explain the ability of ants to colonize habitats worldwide.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700