用户名: 密码: 验证码:
Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects
详细信息查看全文 | 推荐本文 |
摘要
Cereals β-glucans are linear homopolysaccharides of consecutively linked (1→4)-β-d-glucosyl residues (i.e. oligomeric cellulose segments) that are separated by single (1→3)-linkages. β-Glucans display all the functional properties of viscous and gel forming food hydrocolloids combined with all the physiological properties of dietary fibres. This review focuses on the relationships between the molecular–structural characteristics of β-glucans and their physicochemical properties in aqueous dispersions and in food systems as well as their physiological functions in the gastro-intestinal tract. The physical properties of β-glucans, such as solubility and rheological behaviour in the solution and gel states, are controlled by their molecular features, such as their distribution of cellulosic oligomers, their linkage pattern and their molecular weight as well as by temperature and concentration. The technological and nutritional functionality of β-glucans is often related to their rheological behaviour. Incorporation of β-glucans into various products (bread, muffins, pasta, noodles, salad dressings, beverages, soups, reduced-fat dairy and meat products) showed that attributes, such as breadmaking performance, water binding and emulsion stabilising capacity, thickening ability, texture, and appearance appear to be related to the concentration, molecular weight and structure of the polysaccharide. The health benefits of β-glucans, such as reducing blood serum cholesterol and regulating blood glucose levels, are also correlated with the amount and molecular weight of the solubilised β-glucans in the gastro-intestinal tract.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700