用户名: 密码: 验证码:
Reduction of flow- and eddy-currents-induced image artifacts in coronary magnetic resonance angiography using a linear centric-encoding SSFP sequence
详细信息查看全文 | 推荐本文 |
摘要
Coronary magnetic resonance angiography (MRA) acquired using steady-state free precession (SSFP) sequences tends to suffer from image artifacts caused by local magnetic field inhomogeneities. Flow- and gradient-switching-induced eddy currents are important sources of such phase errors, especially under off-resonant conditions. In this study, we propose to reduce these image artifacts by using a linear centric-encoding (LCE) scheme in the phase-encoding (PE) direction. Abrupt change in gradients, including magnitude and polarity between consecutive radiofrequency cycles, is minimized using the LCE scheme. Results from numeric simulations and phantom studies demonstrated that signal oscillation can be markedly reduced using LCE as compared to conventional alternating centric-encoding (ACE) scheme. The image quality of coronary arteries was improved at both 1.5 and 3.0 T using LCE compared to those acquired using ACE PE scheme (1.5 T: ACE/LCE=2.2±0.8/3.0±0.6, P=.02; 3.0 T: ACE/LCE=2.1±1.1/3.0±0.8, P=.01). In conclusion, flow- and eddy-currents-induced imaging artifacts in coronary MRA using SSFP sequence can be markedly reduced with LCE acquisition of PE lines.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700