用户名: 密码: 验证码:
IFN-纬-primed human bone marrow mesenchymal stem cells induce tumor cell apoptosis in vitro via tumor necrosis factor-related apoptosis-inducing ligand
详细信息查看全文 | 推荐本文 |
摘要
Human mesenchymal stem cells hold promise as gene therapy vectors for delivery of various genes to solid tumors for either therapeutic or tumor-tracing purposes. However, whether Mesenchymal stem cells support or inhibit tumor growth remains unknown. Herein, we first observed that mesenchymal stem cells primed with IFN-纬 selectively induced the death of tumor cell lines, but not normal cells. We further identified that IFN-纬-primed mesenchymal stem cells expressed tumor necrosis factor-related apoptosis-inducing ligand. Tumor-suppressive effect of IFN-纬-primed mesenchymal stem cells could be blocked by activity neutralization or expression reduction of tumor necrosis factor-related apoptosis-inducing ligand. Moreover, mesenchymal stem cells mediated apoptosis of tumor cells by activating caspase-3 in such cells, via a mechanism involving tumor necrosis factor-related apoptosis-inducing ligand. However, when IFN-纬-primed or non-primed mesenchymal stem cells were co-injected into nude mice along with H460 cells, tumor growth was much faster than that of the group receiving only tumor cells (p < 0.01) because of the promoting vascularization effect of mesenchymal stem cells, although IFN-纬-primed mesenchymal stem cells also exerted a certain degree of tumor-suppressive effect compared with non-primed cells (2.79 卤 0.9 g versus 2.03 卤 0.6 g). Collectively, our findings show that IFN-纬-primed human mesenchymal stem cells could induce cancer cell apoptosis via TRAIL-mediated pathway. In addition, our data afford a novel explanation of the opposing effects of hMSCs presence on tumor growth in vitro and in vivo. Thus, more attention needs to be paid when seeking to exploit mesenchymal stem cells as a therapeutic option under the condition of malignant tumor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700