用户名: 密码: 验证码:
A practical numerical approach for prediction of particulate fouling in PC boilers
详细信息查看全文 | 推荐本文 |
摘要
Particulate fouling of convective heat-transfer surfaces is usually assessed by empirical correlations. Nevertheless, constant progress in numerical calculation methods allows for prediction of deposition. This paper presents results of 2D modeling of powdery, medium-temperature deposit formation on superheater tubes. In contrast to other studies, presented approach results in shape prediction of deposits versus time of boiler operation. The mechanism includes the force of gravity, elastic rebound and adhesion forces acting at the moment of ash particle impaction. The forces determine if the particle bounces off the surface or stays onto it building up the deposit. Two practical cases are considered - an upward flue gas flow and a downward flow in the boiler. The results of simulations are compared with measurements in real boilers published earlier. The full-scale results are reproduced well. The simulations are carried out with use of Fluent code by means of User Defined Files. The described mechanism is implemented in Define_DPM_Erosion, and shape prediction is mirrored using Define_Grid_Motion functions of the Fluent code.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700