用户名: 密码: 验证码:
Sensitivity analysis of fracture scattering
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Xinding Fang ; Michael Fehler ; Tianrun Chen ; Daniel Burns ; Zhenya Zhu
  • Publisher:Society of Exploration Geophysicists
  • Date:2013-01-01
  • Format:text/html
  • Language:en
  • Identifier:10.1190/geo2011-0521.1
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:78
  • issue:1
  • firstpage:T1
  • section:Seismic Modeling and Wave Propagation
摘要

We use 2D and 3D finite-difference modeling to numerically calculate the seismic response of a single finite fracture with a linear-slip boundary in a homogeneous elastic medium. We use a point explosive source and ignore the free surface effect, so the fracture scattered wavefield contains two parts: P-to-P scattering and P-to-S scattering. The elastic response of the fracture is described by the fracture compliance. We vary the incident angle and fracture compliance within a range considered appropriate for field observations and investigate the P-to-P and P-to-S scattering patterns of a single fracture. P-to-P and P-to-S fracture scattering patterns are sensitive to the ratio of normal to tangential fracture compliance and incident angle, whereas the scattering amplitude is proportional to the compliance, which agrees with the Born scattering analysis. We find that, for a vertical fracture, if the source is located at the surface, most of the energy scattered by the fracture propagates downwards. We also study the effect of fracture height on the scattering pattern and scattering amplitude.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700