用户名: 密码: 验证码:
A geophysical investigation of the active Hockley Fault System near Houston, Texas
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Shuhab D. Khan ; Robert R. Stewart ; Maisam Otoum ; Li Chang
  • Publisher:Society of Exploration Geophysicists
  • Date:2013-07-01
  • Format:text/html
  • Language:en
  • Identifier:10.1190/geo2012-0258.1
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:78
  • issue:4
  • firstpage:B177
  • section:Case Histories
摘要

Sedimentation and deformation toward the Gulf of Mexico Basin cause faulting in the coastal regions. In particular, many active (but non-seismic) faults underlie the Houston metropolitan area. Using geophysical data, we have examined the Hockley Fault System in northwest Harris County. Airborne LiDAR is an effective tool to identify fault scarps and we have used it to identify several new faults and assemble an updated map for the faults in Houston and surrounding areas. Two different LiDAR data sets (from 2001 to 2008) provide time-lapse images and suggest elevation changes across the Hockley Fault System at the rate of 10.9 mm/yr. This rate is further supported by GPS data from a station located on the downthrown side of the Hockley Fault System indicating movement at 13.8 mm/yr. To help illuminate the subsurface character of the faults, we undertook geophysical surveys (ground-penetrating radar, seismic reflection, and gravity) across two strands of the Hockley Fault System. Ground-penetrating radar data show discontinuous events to a depth of 10 m at the main fault location. Seismic data, from a vibroseis survey along a 1-km line perpendicular to the fault strike, indicate faulting to at least 300-m depth. The faults have a dip of about 70°. Gravity data show distinct changes across the fault. However, there are two contrasting Bouguer anomalies depending on the location of the transects and their underlying geology. Our geophysical surveys were challenged by urban features (especially traffic and access). However, the survey results consistently locate the fault and hold significant potential to understand its deformational features as well as assist in associated building zoning.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700