用户名: 密码: 验证码:
Vertical Profiles of Community Abundance and Diversity of Anaerobic Methanotrophic Archaea (ANME) and Bacteria in a Simple Waste Landfill in North China
详细信息    查看全文
  • 作者:Jun Dong (1)
    Linjie Ding (1)
    Xu Wang (1)
    Zifang Chi (1) (2)
    Jiansen Lei (1)

    1. Key Lab of Groundwater Resources and Environment
    ; Ministry of Education ; Jilin University ; Changchun ; 130021 ; People鈥檚 Republic of China
    2. Key Laboratory for Solid Waste Management and Environment Safety
    ; Ministry of Education ; Tsinghua University ; Beijing ; 100084 ; People鈥檚 Republic of China
  • 关键词:Anaerobic methane oxidation (AMO) ; Anaerobic methanotrophs (ANMEs) ; Electron acceptors ; Sulfate ; reducing bacteria (SRB) ; Landfill
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:175
  • 期:5
  • 页码:2729-2740
  • 全文大小:591 KB
  • 参考文献:1. Aquilina, A, Knab, NJ, Knittel, K, Kaur, G, Geissler, A, Kelly, SP, Fossing, H, Boot, CS, Parkes, RJ, Mills, RA, Boetius, A, Lloyd, JR, Pancost, RD (2010) Biomarker indicators for anaerobic oxidizers of methane in brackish-marine sediments with diffusive methane fluxes. Organic Geochemistry 41: pp. 414-426 CrossRef
    2. Barnes, R, Goldberg, E (1976) Methane production and consumption in anoxic marine sediments. Geology 4: pp. 297-300 CrossRef
    3. Beal, EJ, House, CH, Orphan, VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325: pp. 184-187 CrossRef
    4. Bjerg, PL, Ruegge, K, Pedersen, JK, Christensen, TH (1995) Distribution of redox-sensitive groundwater quality parameters downgradient of a landfill (Grindsted, Denmark). Environmental Science & Technology 29: pp. 1387-1394 CrossRef
    5. Boetius, A, Ravenschlag, K, Schubert, CJ, Rickert, D, Widdel, F, Gieseke, A, Amann, R, Jorgensen, BB, Witte, U, Pfannkuche, O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: pp. 623-626 CrossRef
    6. Bogner, J, Spokas, K, Burton, E, Sweeney, R, Corona, V (1995) Landfills as atmospheric methane sources and sinks. Chemosphere 31: pp. 4119-4130 CrossRef
    7. Bradley, M, Tebo, AY (1998) Sulfate-reducing bacterium grows with Cr (VI), U(VI), Mn(IV), and Fe(III), as electron acceptors. Elsevier Science B.V. 162: pp. 193-198
    8. Caldwell, SL, Laidler, JR, Brewer, EA, Eberly, JO, Sandborgh, SC, Colwell, FS (2008) Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environmental Science & Technology 42: pp. 6791-6799 CrossRef
    9. Deutzmann, JS, Schink, B (2011) Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Applied and Environmental Microbiology 77: pp. 4429-4436 CrossRef
    10. Golterman, H, Bierbrauwer-W眉rtz, IDG (1992) Colorimetric determination of sulphate in freshwater with a chromate reagent. Hydrobiologia 228: pp. 111-115 CrossRef
    11. Goswami, D, Kalita, H (1988) Rapid determination of iron in water by modified thiocyanate method. Defence Science Journal 38: pp. 177-182 CrossRef
    12. Grossman, EL, Cifuentes, LA, Cozzarelli, IM (2002) Anaerobic methane oxidation in a landfill-leachate plume. Environmental Science & Technology 36: pp. 2436-2442 CrossRef
    13. Hallam, SJ, Putnam, N, Preston, CM, Detter, JC, Rokhsar, D, Richardson, PM, DeLong, EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305: pp. 1457-1462 CrossRef
    14. Han D, S. F., Chai X L. (2011) A new way of natural mitigation of methane in a refuse landfill: anaerobic and aerobic co-oxidation. Acta Scientiae Circumstantiae, / 31, 791鈥?97
    15. Holmes, DE, Bond, DR, O'Neil, RA, Reimers, CE, Tender, LR, Lovley, DR (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microbial Ecology 48: pp. 178-190 CrossRef
    16. Knittel, K, Losekann, T, Boetius, A, Kort, R, Amann, R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Applied and Environmental Microbiology 71: pp. 467-479 CrossRef
    17. Maynard, D, Kalra, Y (1993) Nitrate and exchangeable ammonium nitrogen. Soil sampling and methods of analysis. Lewis Publ, Boca Raton, FL
    18. Michaelis, W, Seifert, R, Nauhaus, K, Treude, T, Thiel, V, Blumenberg, M, Knittel, K, Gieseke, A, Peterknecht, K, Pape, T, Boetius, A, Amann, R, Jorgensen, BB, Widdel, F, Peckmann, J, Pimenov, NV, Gulin, MB (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297: pp. 1013-1015 CrossRef
    19. Moran, JJ, Beal, EJ, Vrentas, JM, Orphan, VJ, Freeman, KH, House, CH (2008) Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environmental Microbiology 10: pp. 162-173
    20. Niemann, H, Losekann, T, Beer, D, Elvert, M, Nadalig, T, Knittel, K, Amann, R, Sauter, EJ, Schlueter, M, Klages, M, Foucher, JP, Boetius, A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443: pp. 854-858 CrossRef
    21. Orcutt, B, Boetius, A, Elvert, M, Samarkin, V, Joye, SB (2005) Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochimica et Cosmochimica Acta 69: pp. 4267-4281 CrossRef
    22. Orphan, VJ, Hinrichs, KU, Ussler, W, Paull, CK, Taylor, LT, Sylva, SP, Hayes, JM, Delong, EF (2001) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Applied and Environmental Microbiology 67: pp. 1922-1934 CrossRef
    23. Orphan, VJ, House, CH, Hinrichs, K-U, McKeegan, KD, DeLong, EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293: pp. 484-487 CrossRef
    24. Pawlak, Z, Pawlak, AS (1999) Modification of iodometric determination of total and reactive sulfide in environmental samples. Talanta 48: pp. 347-353 CrossRef
    25. Peckmann, J, Thiel, V (2004) Carbon cycling at ancient methane鈥搒eeps. Chemical Geology 205: pp. 443-467 CrossRef
    26. Reeburgh, WS (1976) Methane consumption in Cariaco Trench waters and sediments. Earth and Planetary Science Letters 28: pp. 337-344 CrossRef
    27. Rutters, H, Sass, H, Cypionka, H, Rullkotter, J (2001) Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Archives of Microbiology 176: pp. 435-442 CrossRef
    28. Schroth, MH, Eugster, W, Gomez, KE, Gonzalez-Gil, G, Niklaus, PA, Oester, P (2012) Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil. Waste Management 32: pp. 879-889 CrossRef
    29. Shima, S, Thauer, RK (2005) Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Current Opinion in Microbiology 8: pp. 643-648 CrossRef
    30. Sivan, O, Adler, M, Pearson, A, Gelman, F, Bar-Or, I, John, SG, Eckert, W (2011) Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnology and Oceanography 56: pp. 1536-1544 CrossRef
    31. Stadnitskaia, A, Muyzer, G, Abbas, B, Coolen, M, Hopmans, E, Baas, M, Weering, T, Ivanov, M, Poludetkina, E, Sinninghe Damst茅, J (2005) Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Marine Geology 217: pp. 67-96 CrossRef
    32. Thamdrup, B, Rossell贸-Mora, R, Amann, R (2000) Microbial manganese and sulfate reduction in Black Sea shelf sediments. Applied and Environmental Microbiology 66: pp. 2888-2897 CrossRef
    33. Treude, T, Boetius, A, Knittel, K, Wallmann, K, Barker Joergensen, B (2003) Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Marine Ecology Progress Series 264: pp. 1-14 CrossRef
    34. Tsunogai, U (2002) Carbon isotopic evidence of methane oxidation through sulfate reduction in sediment beneath cold seep vents on the sea拢oor at Nankai Trough. Marine Geology 187: pp. 145-160 CrossRef
    35. Amstel, A, Swart, R (1994) Methane and nitrous oxide emissions: an introduction. Fertilizer Research 37: pp. 213-225 CrossRef
    36. Wang, Y-S, Byrd, CS, Barlaz, MA (1994) Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay. Journal of Industrial Microbiology 13: pp. 147-153 CrossRef
    37. Wankel, SD, Adams, MM, Johnston, DT, Hansel, CM, Joye, SB, Girguis, PR (2012) Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environmental Microbiology 14: pp. 2726-2740 CrossRef
    38. Zehnder, A, Brock, T (1979) Methane formation and methane oxidation by methanogenic bacteria. Journal of Bacteriology 137: pp. 420-432
    39. Zhu, G, Jetten, MS, Kuschk, P, Ettwig, KF, Yin, C (2010) Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Applied Microbiology and Biotechnology 86: pp. 1043-1055 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700