用户名: 密码: 验证码:
Modified disordered carbon prepared from 3,4,9,10-perylenetetracarboxylic dianhydride as an anode material for Li-ion batteries
详细信息    查看全文
  • 作者:Fei-biao Chen (1)
    Bo-rong Wu (1)
    Yun-kui Xiong (2)
    Wei-lin Liao (2)
    Dao-Bin Mu (1)
    Feng Wu (1)

    1. Beijing Key Laboratory of Environmental Science and Engineering
    ; School of Chemical Engineering and Environment ; Beijing Institute of Technology ; Beijing ; 100081 ; China
    2. Jiangxi Fine Chemical Key Laboratory
    ; Jiangxi Normal University ; Jiangxi ; 330027 ; China
  • 关键词:carbon ; perylenetetracarboxylic dianhydride ; anode materials ; lithium ; ion batteries
  • 刊名:International Journal of Minerals, Metallurgy, and Materials
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:22
  • 期:2
  • 页码:203-209
  • 全文大小:1,002 KB
  • 参考文献:1. L. Chen, X.L. Li, Q. Zhao, W.B. Cai, and Z. Y. Jiang, Bipolar pulse current charge method for inhibiting the format ion of lithium dendrite, / Acta Phys. Chim. Sin., 22(2006), No. 9, p. 115.
    2. M.S. Whittingham, / Chalcogenide Battery, US Patent, Appl. US4009052 A, 1977.
    3. J.H. Jeong, D.W. Jung, E.W. Shin, and E.S. Oh, Boron-doped TiO2 anode materials for high-rate lithium ion batteries, / J. Alloys Compd., 604(2014), p. 226. CrossRef
    4. P.C. Lian, J.Y. Wang, D.D. Cai, G.X. Liu, Y.Y. Wang, and H.H. Wang, Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries, / J. Alloys Compd., 604(2014), p. 188. CrossRef
    5. P.P. Lv, H.L. Zhao, Z.P. Zeng, J. Wang, T.H. Zhang, and X.W. Li, Facile preparation and electrochemical properties of carbon coated Fe3O4 as anode material for lithium-ion batteries, / J. Power Sources, 259(2014), p. 92. CrossRef
    6. D.S. Wang, M.X. Gao, H.G. Pan, Y.F. Liu, J.H. Wang, S.Q. Li, and H.W. Ge, Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization, / J. Alloys Compd., 604(2014), p. 130. CrossRef
    7. K.Q. Wu, X.T. Lin, L.Y. Shao, M. Shui, N.B. Long, Y.L. Ren, and J. Shu, Copper/carbon coated lithium sodium titanate as advanced anode material for lithium-ion batteries, / J. Power Sources, 259(2014), p. 177. CrossRef
    8. J. Yi, Y.L. Liu, Y. Wang, X.P. Li, S.J. Hu, and W.S. Li, Synthesis of dandelion-like TiO2 microspheres as anode materials for lithium ion batteries with enhanced rate capacity and cyclic performances, / Int. J. Miner. Metall. Mater., 19(2012), No. 11, p. 1058. CrossRef
    9. Y.B. Chen, Y. Hu, F. Lian, and Q.G. Liu, Synthesis and characterization of spinel Li1.05Cr0.1Mn1.9O4鈭?em class="a-plus-plus">z Fz as cathode materials for lithium-ion batteries, / Int. J. Miner. Metall. Mater., 17(2010), No. 2, p. 220. CrossRef
    10. S. Yata, H. Kinoshita, M. Komori, N. Ando, T. Kashiwamura, T. Harada, K. Tanaka, and T. Yamabe, Structure and properties of deeply Li-doped polyacenic semiconductor materials beyond C6Li stage, / Synth. Met., 62(1994), p. 153. CrossRef
    11. K. Sato, M. Noguchi, A. Demachi, N. Oki, and M. Endo, A mechanism of lithium storage in disordered carbons, / Science, 264(1994), No. 5158, p. 556. science.264.5158.556" target="_blank" title="It opens in new window">CrossRef
    12. Y. Nishi. / Organic Electrolyte Secondary Cell, EU Patent, Appl. 89115940.2, 1996.
    13. M. Alamgir, Q. Zuo, and K.M. Abraham, The behavior of carbon electrodes derived from poly( / p-phenylene) in polyacrylonitrile-based polymer electrolyte cells, / J. Electrochem. Soc., 141(1994), No. 11, p. L143. CrossRef
    14. Z.H. Yi, X.Y. Han, C.C. Ai, Y.G. Liang, and J.T. Sun, Reversible lithium intercalation in disordered carbon prepared from 3,4,9,10-perylenetetracarboxylic dianhydride, / J. Solid State Electrochem., 12(2008), No. 9, p. 1061. CrossRef
    15. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai, Nanotube molecular wires as chemical sensors, / Science, 287(2000), No. 5453, p. 622. science.287.5453.622" target="_blank" title="It opens in new window">CrossRef
    16. P.G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes, / Science, 287(2000), No. 5459, p. 1801. science.287.5459.1801" target="_blank" title="It opens in new window">CrossRef
    17. S.C. Tsang, Y.K. Chen, P.J.F. Harris, and M.L.H. Green, A simple chemical method of opening and filling carbon nanotubes, / Nature, 372(1994), p. 159. CrossRef
    18. R.M. Lago, S.C. Tsang, K.L. Lu, Y.K. Chen, and M.L.H. Green, Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups, / J. Chem. Soc., Chem. Commun., 1995, No. 13, p. 1355.
    19. H. Hiura, T.W. Ebbesen, and K. Tanigaki, Opening and purification of carbon nanotubes in high yields, / Adv. Mater., 7(1995), No. 3, p. 275. CrossRef
    20. J. Liu, A.G. Rinzler, H.J. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, and C.B. Huffman, Fullerene pipes, / Science, 280(1998), No. 5367, p. 1253. science.280.5367.1253" target="_blank" title="It opens in new window">CrossRef
    21. B.S. Sherigara, W. Kutner, and F. D鈥橲ouza, Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes, / Electroanalysis, 15(2003), No. 9, p. 753. CrossRef
    22. J. Chen, M.A. Hamon, H. Hu, Y.S. Chen, A.M. Rao, P.C. Eklund, and R.C. Haddon, Solution properties of single-walled carbon nanotubes, / Science, 282(1998), No. 5386, p. 95. science.282.5386.95" target="_blank" title="It opens in new window">CrossRef
    23. M.A. Hamon, J. Chen, H. Hu, Y.S. Chen, M.E. Itkis, A.M. Rao, P.C. Eklund, and R.C. Haddon, Dissolution of single-walled carbon nanotubes, / Adv. Mater., 11(1999), No. 10, p. 834. CrossRef
    24. J. Chen, A.M. Rao, S. Lyuksyutov, M.E. Itkis, M.A. Hamon, H. Hu, R.W. Cohn, P.C. Eklund, D.T. Colbert, R.E. Smalley, and R.C. Haddon, Dissolution of full-length single-walled carbon nanotubes, / J. Phys. Chem. B, 105(2001), No. 13, p. 2525. CrossRef
    25. B. Li, Y.F. Liao, Z.J. Shi, and Z.N. Gu, Chemical modification of single-wall carbon nanotube, / Chem. J. Chin. Univ., 21(2000), No. 11, p. 1633.
    26. L. Corvazier, L. Mess茅, C.L.O. Salou, R.N. Young, J.P.A. Fairclough, and A.J. Ryan, Lamellar phases and microemulsions in model ternary blends containing amphiphilic block copolymers, / J. Mater. Chem., 11(2001), p. 2864. CrossRef
    27. W.J. Huang, Y. Lin, S. Taylor, J. Gaillard, A.M. Rao, and Y.P. Sun, Sonication-assisted functionalization and solubilization of carbon nanotubes, / Nano Lett., 2(2002), No. 3, p. 231. CrossRef
    28. K.A. Shiral Fernando, Y. Lin, and Y.P. Sun, High aqueous solubility of functionalized single-walled carbon nanotubes, / Langmuir, 20(2004), p. 4777. CrossRef
    29. M.W. Marshall, S.P. Nita, and J.G. Shapter, Measurement of functionalised carbon nanotube carboxylic acid groups using a simple chemical process, / Carbon, 44(2006), p. 1137. CrossRef
    30. V. Meunier, J. Kephart, C. Roland, and J. Bernholc, / Ab initio investigations of lithium diffusion in carbon nanotube systems, / Phys. Rev. Lett., 88(2002), Article No. 075506.
    31. X. Han, C. Chang, L. Yuan, T. Sun, and J. Sun, Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials, / Adv. Mater., 19(2007), No. 12, p. 1616. CrossRef
    32. E.R. Buiel, A.E. George, and J.R. Dahn, Model of micropore closure in hard carbon prepared from sucrose, / Carbon, 37(1999), No. 9, p. 1399. CrossRef
    33. E. Dujardin, T.W. Ebbesen, A. Krishnan, and M.M.J. Treacy, Purification of single-shell nanotubes, / Adv. Mater., 10(1998), No. 8, p. 611. CrossRef
    34. T. Zheng, Y.H. Liu, E.W. Fuller, S. Tseng, U. Von Sacken, and J.R. Dahn, Lithium insertion in high capacity carbonaceous materials, / J. Electrochem. Soc., 142(1995), No. 8, p. 2581. CrossRef
    35. T. Zheng, J.S. Xue, and J.R. Dahn, Lithium insertion in hydrogen-containing carbonaceous materials, / Chem. Mater., 8(1996), p. 389. CrossRef
    36. J.K. Lee, K.W. An, J.B. Ju, B.W. Cho, W.I. Cho, D. Park, and K.S. Yun, Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries, / Carbon, 39(2001), No. 9, p. 1299. CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science
    Metallic Materials
    Mineral Resources
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1869-103X
文摘
To prepare an anode material for Li-ion batteries with high discharge capacity and good cycling stability, disordered carbon (DC) formed by calcinations of 3,4,9,10-perylenetetracarboxylic dianhydride was modified via an acid treatment using a mixture of HNO3 and H2SO4. The modified disordered carbon (MDC) was characterized by Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, Brunauer-Emmett-Teller (BET) analysis, and scanning electron microscopy (SEM). FTIR spectra confirm the successful introduction of carbonyl groups onto the DC surface. Some pores appear in the columnar structure of MDC, as observed in SEM micrographs. Li+ ions intercalation/deintercalation is facilitated by the modified morphology. Electrochemical tests show that the MDC exhibits a significant improvement in discharge capacity and cycling stability. These results indicate that the MDC has strong potential for use as an anode material in Li-ion batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700