用户名: 密码: 验证码:
Non-lane-discipline-based car-following model considering the effects of two-sided lateral gaps
详细信息    查看全文
  • 作者:Yongfu Li (1)
    Li Zhang (1)
    Srinivas Peeta (2)
    Hongguang Pan (3)
    Taixiong Zheng (1)
    Yinguo Li (1)
    Xiaozheng He (2)

    1. Center for Automotive Electronics and Embedded System
    ; College of Automation ; Chongqing University of Posts and Telecommunications ; Chongqing ; 400065 ; People鈥檚 Republic of China
    2. School of Civil Engineering and The NEXTRANS Center
    ; Purdue University ; West Lafayette ; IN ; 47907 ; USA
    3. Department of Automation
    ; School of Electronic and Information Engineering ; Xi鈥檃n Jiaotong University ; Xi鈥檃n ; 710049 ; China
  • 关键词:Car ; following model ; Lateral gaps ; Linear stability analysis ; Nonlinear analysis
  • 刊名:Nonlinear Dynamics
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:80
  • 期:1-2
  • 页码:227-238
  • 全文大小:1,810 KB
  • 参考文献:1. Chandler, RE, Herman, R, Montroll, EW (1958) Traffic dynamics: studies in car following. Op. Res. 6: pp. 165-184 CrossRef
    2. Kurt, E, Busse, FH, Pesch, W (2004) Hydromagnetic convection in a rotating annulus with an azimuthal magnetic field. Theor. Comput. Fluid Dyn. 18: pp. 251-263 CrossRef
    3. Kurt, E, Pesch, W, Busse, FH (2007) Pattern formation in the rotating cylindrical annulus with an azimuthal magnetic field at low Prandtl numbers. J. Vib. Control 13: pp. 1321-1330 CrossRef
    4. Hoogendoorn, SP, Bovy, PHL (2001) State-of-the-art of vehicular traffic flow modelling. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 215: pp. 283-303 CrossRef
    5. Darbha, S, Rajagopal, KR, Tyagi, V (2008) A review of mathematical models for the flow of traffic and some recent results. Nonlinear Anal. 69: pp. 950-970 CrossRef
    6. Ossen, S, Hoogendoorn, SP (2011) Heterogeneity in car-following behavior: theory and empirics. Transp. Res. Part C Emerg. Technol. 19: pp. 182-195 CrossRef
    7. Wilson, RE, Ward, JA (2011) Car-following models: fifty years of linear stability analysis-a mathematical perspective. Transp. Plann. Technol. 34: pp. 3-18 CrossRef
    8. Li, Y, Sun, D (2012) Microscopic car-following model for the traffic flow: the state of the art. J. Control Theor. Appl. 10: pp. 133-143 CrossRef
    9. Bando, M, Hasebe, K, Nakayama, A, Shibata, A, Sugiyama, Y (1995) Dynamics model of traffic congestion and numerical simulation. Phys. Rev. E 1: pp. 1035-1042 CrossRef
    10. Helbing, D, Tilch, B (1998) Generalized force model of traffic dynamics. Phys. Rev. E 58: pp. 133-138 CrossRef
    11. Treiber, M, Hennecke, A, Helbing, D (1999) Derivation, properties and simulation of a gas-kinetic-based nonlocal traffic model. Phys. Rev. E 59: pp. 239-253 CrossRef
    12. Jiang, R, Wu, QS, Zhu, ZJ (2001) Full velocity difference model for a car-following theory. Phys. Rev. E 64: pp. 017101-017105 CrossRef
    13. Jiang, R, Wu, QS, Zhu, ZJ (2002) A new continuum model for traffic flow and numerical tests. Transp. Res. Part B 36: pp. 405-419 CrossRef
    14. Zhao, XM, Gao, ZY (2005) A new car-following model: full velocity and acceleration difference model. Eur. Phys. J. B 47: pp. 145-150 CrossRef
    15. Wang, T, Gao, ZY, Zhao, XM (2006) Multiple velocity difference model and its stability analysis. Acta Phys. Sin. 55: pp. 634-638
    16. Xie, DF, Gao, ZY, Zhao, XM (2008) Stabilization of traffic flow based on the multiple information of preceding cars. Commun. Comput. Phys. 3: pp. 899-912
    17. Li, Y, Sun, D, Liu, W, Zhang, M, Zhao, M, Liao, X, Tang, L (2011) Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference. Nonlinear Dyn. 66: pp. 15-28 CrossRef
    18. Tang, T., Li, C., Wu, Y., Huang, H.: Impact of the honk effect on the stability of traffic flow. Phys. A Stat. Mech. Appl. 390(20), 3362鈥?368 (2011)
    19. Tang, T., Wu, Y., Caccetta, L., Huang, H.: A new car-following model with consideration of roadside memorial. Phys. Lett. A 375(44), 3845鈥?850 (2011)
    20. Tang, T, Wang, Y, Yang, X, Wu, Y (2012) A new car-following model accounting for varying road condition. Nonlinear Dyn. 70: pp. 1397-1405 CrossRef
    21. Li, Y, Zhu, H, Cen, M, Li, Y, Li, R, Sun, D (2013) On the stability analysis of microscopic traffic car-following model: a case study. Nonlinear Dyn. 74: pp. 335-343 CrossRef
    22. Tang, T, Li, J, Huang, H, Yang, X (2014) A car-following model with real-time road conditions and numerical tests. Measurement 48: pp. 63-76 CrossRef
    23. Tang, T, Shi, W, Shang, H, Wang, Y (2014) A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn. 76: pp. 2017-2023 CrossRef
    24. Chandra, S, Kumar, U (2003) Effect of lane width on capacity under mixed traffic conditions in India. J. Transp. Eng. 129: pp. 155-160 CrossRef
    25. Jin, S, Wang, D, Tao, P, Li, P (2010) Non-lane-based full velocity difference car following model. Phys. A Stat. Mech. Appl. 389: pp. 4654-4662 CrossRef
    26. Gunay, B (2007) Car following theory with lateral discomfort. Transp. Res. Part B 41: pp. 722-735 CrossRef
    27. Monteil, J., Billot, R., Sau, J., EI Faouzi, N.E.: Linear and weakly nonlinear stability analyses of cooperative car-following models. IEEE Trans. Intell. Transp. Syst. (2014). doi:10.1109/TITS.2014.2308435
    28. Kurtz, DA, Hong, DC (1995) Traffic jams, granular flow, and soliton selection. Phys. Rev. E 52: pp. 218-221 CrossRef
    29. Komatsu, TS, Sasa, S (1995) Kink soliton characterizing traffic congestion. Phys. Rev. E 52: pp. 5574-5582 CrossRef
    30. Nagatani, T (1999) Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction. Phys. Rev. E 60: pp. 6395-6401 CrossRef
    31. Li, ZP, Liu, YC, Liu, FQ (2007) A dynamical model with next-nearest-neighbor interaction in relative velocity. Int. J. Mod. Phys. C 18: pp. 819-832 CrossRef
    32. Ge, HX, Cheng, RJ, Dai, SQ (2005) KdV and kink-antikink solitons in car-following models. Phys. A 357: pp. 466-476 CrossRef
    33. Lei, Y, Shi, ZK (2008) Nonlinear analysis of an extended traffic flow model in ITS environment. Chaos Solitons Fractals 36: pp. 550-558 CrossRef
    34. Yu, L, Shi, ZK, Zhou, BC (2008) Kink-antikink density wave of an extended car-following model in a cooperative driving system. Commun. Nonlinear Sci. Numer. Simul. 13: pp. 2167-2176 CrossRef
    35. Kurtze, DA (2013) Solitons and kinks in a general car-following model. Phys. Rev. E 88: pp. 032804-032815 CrossRef
    36. Lv, F, Zhu, H, Ge, H (2014) TDGL and mKdV equations for car-following model considering driver鈥檚 anticipation. Nonlinear Dyn. 77: pp. 1-6 CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
This study proposes a new car-following model that considers the effects of two-sided lateral gaps on a road without lane discipline. In particular, a car-following model is proposed to capture the impacts from the lateral gaps of the leading vehicles on both sides of the following vehicle. Linear stability analysis of the proposed model is performed using the perturbation method to obtain the stability condition. Nonlinear analysis is performed using the reductive perturbation method to derive the modified Korteweg de Vries equation to describe the density wave propagation. Results from numerical experiments illustrate that the proposed car-following model has larger stable region compared to a car-following model that considers the effect of lateral gap on only one side. Also, it is able to more rapidly dissipate the effect of a perturbation such as a sudden stimulus from a leading vehicle. In addition, the findings of this study provide insights in analyzing system performance of a non-lane-discipline road system in the future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700