用户名: 密码: 验证码:
Synthesis of mesoporous carbons and reduced graphene oxide and their influence on the cycling performance of rechargeable Li-O2 batteries
详细信息    查看全文
  • 作者:Juqin Zeng ; Julia Amici…
  • 关键词:Lithium ; oxygen battery ; Mesoporous carbon ; Reduced graphene oxide ; Pore size ; Cycling performance
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:21
  • 期:2
  • 页码:503-514
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Physical Chemistry; Electrochemistry; Energy Storage; Characterization and Evaluation of Materials; Analytical Chemistry; Condensed Matter Physics;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1433-0768
  • 卷排序:21
文摘
In the lithium-oxygen (Li-O2) cell, the porous structure of the cathode is an important issue as well as challenge for its task of accommodating discharge products and providing free paths for oxygen. Clogging of pores and degradation of materials at the cathode affect the discharge rates and cycling performance of Li-O2 cell. Based on the study of five synthesized nanostructured porous carbons, namely, 2-D ordered mesoporous carbon C-15, 3-D ordered mesoporous carbons C-16 and C-16B with larger pores, hollow core mesoporous shell carbon (HCMSC), and reduced graphene oxide (rGO), we found that the type and pore structure of the carbon significantly affect the electrochemical performance of the cell. Both C-15 and rGO cathodes demonstrate good cell cycleability, while the HCMSC, with its interesting bimodal pore system, is not favorable for further improving cycling performance. The C-16B has similar morphology and electrolyte wettability of C-16. However, the former possesses larger pores, and such porosity significantly improves the cell cycleability up to 44 cycles, corresponding to an extended operation life of 850 h.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700