用户名: 密码: 验证码:
Seedling root QTLs analysis on dynamic development and upon nitrogen deficiency stress in Upland cotton
详细信息    查看全文
  • 作者:Lianguang Shang ; Shihu Cai ; Lingling Ma ; Yumei Wang ; Abdugheni Abduweli…
  • 关键词:Seedling root ; Dynamic QTLs ; Nitrogen deficiency ; Upland cotton
  • 刊名:Euphytica
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:207
  • 期:3
  • 页码:645-663
  • 全文大小:1,211 KB
  • 参考文献:Blenda A, Fang DD, Rami J, Garsmeur O, Luo F, Lacape J (2012) A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS ONE 7:e45739PubMed PubMedCentral CrossRef
    Burton AL, Johnson JM, Foerster JM, Hirsch CN, Buell CR, Hanlon MT, Kaeppler SM, Brown KM, Lynch JP (2014) QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor Appl Genet 127:2293–2311PubMed CrossRef
    Cai H, Chen F, Mi G, Zhang F, Maurer HP, Liu W, Reif JC, Yuan L (2012) Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages. Theor Appl Genet 125:1313–1324PubMed CrossRef
    Cao P, Ren Y, Zhang K, Teng W, Zhao X, Dong Z, Liu X, Qin H, Li Z, Wang D, Tong Y (2014) Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat. Mol Breeding 33:975–985CrossRef
    Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568CrossRef
    Cheng X, Cheng J, Huang X, Lai Y, Wang L, Du W, Wang Z, Zhang H (2013) Dynamic quantitative trait loci analysis of seed reserve utilization during three germination stages in rice. PLoS ONE 8:e80002PubMed PubMedCentral CrossRef
    Dang X, Thu GTT, Dong G, Wang H, Edzesi WM, Hong D (2014) Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L.). Planta 239:1309–1319PubMed CrossRef
    Fang DD, Jenkins JN, Deng DD, McCarty JC, Li P, Wu J (2014) Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.). BMC Genom 15:397CrossRef
    Feng Y, Cao LY, Wu WM, Shen XH, Zhan XD, Zhai RR, Wang RC, Chen DB, Cheng SH (2010) Mapping QTLs for nitrogen-deficiency tolerance at seedling stage in rice (Oryza sativa L.). Plant Breeding 129:652–656CrossRef
    Gao K, Chen F, Yuan L, Zhang F, Mi G (2014) A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress. Plant, Cell Environ. doi:10.​1111/​pce.​12439
    Hochholdinger F, Tuberosa R (2009) Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol 12:172–177PubMed CrossRef
    Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497PubMed CrossRef
    Jiang Z, Ding J, Han Y, Teng W, Zhang Z, Li W (2013) Identification of QTL underlying mass filling rate at different developmental stages of soybean seed. Euphytica 189:249–260CrossRef
    Lander E, Kruglyak L (1995) Genetic dissection of complex traits—guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247PubMed CrossRef
    Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMed CrossRef
    Landi P, Giuliani S, Salvi S, Ferri M, Tuberosa R, Sanguineti MC (2010) Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. J Exp Bot 61:3553–3562PubMed CrossRef
    Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu Y, Wang J, Yu S (2014a) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572PubMed CrossRef
    Li R, Han Y, Lv P, Du R, Liu G (2014b) Molecular mapping of the brace root traits in sorghum (Sorghum bicolor L. Moench). Breeding Sci 64:193–198CrossRef
    Li FG, Fan GY, Lu CR, Xiao GH, Zou CS, Kohel RJ, Ma ZY, Shang HH, Ma XF, Wu JY, Liang XM, Huang G, Percy RG, Liu K, Yang WH, Chen WB, Du XM, Shi CC, Yuan YL, Ye WW, Liu X, Zhang XY, Liu WQ, Wei HL, Wei SJ, Huang GD, Zhang XL, Zhu SJ, Zhang H, Sun FM, Wang XF, Liang J, Wang JH, He Q, Huang LH, Wang J, Cui JJ, Song GL, Wang KB, Xu X, Yu JZ, Zhu YX, Yu SX (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530PubMed CrossRef
    Lian XM, Xing YZ, Yan H, Xu CG, Li XH, Zhang QF (2005) QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet 112:85–96PubMed CrossRef
    Liang Q, Hu C, Hua H, Li Z, Hua J (2013) Construction of a linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Chinese Sci Bull 58:3233–3243CrossRef
    Liang H, Yu Y, Yang H, Xu L, Dong W, Du H, Cui W, Zhang H (2014a) Inheritance and QTL mapping of related root traits in soybean at the seedling stage. Theor Appl Genet 127:2127–2137PubMed CrossRef
    Liang Q, Li P, Hu C, Hua H, Li Z, Rong Y, Wang K, Hua J (2014b) Dynamic QTL and epistasis analysis on seedling root traits in upland cotton. J Genet 93:63–78PubMed CrossRef
    Liu J, Li J, Chen F, Zhang F, Ren T, Zhuang Z, Mi G (2008) Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.). Plant Soil 305:253–265CrossRef
    Liu G, Zhu H, Zhang G, Li L, Ye G (2012) Dynamic analysis of QTLs on tiller number in rice (Oryza sativa L.) with single segment substitution lines. Theor Appl Genet 125:143–153PubMed CrossRef
    Mace ES, Singh V, Van Oosterom EJ, Hammer GL, Hunt CH, Jordan DR (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124:97–109PubMed CrossRef
    McCouch SR, Chen XL, Panaud O, Temnykh S, Xu YB, Cho YG, Huang N, Ishii T, Blair M (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35:89–99PubMed CrossRef
    Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ (2004) Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108:280–291PubMed CrossRef
    Obara M, Tamura W, Ebitani T, Yano M, Sato T, Yamaya T (2010) Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4 (+) concentrations in hydroponic conditions. Theor Appl Genet 121:535–547PubMed PubMedCentral CrossRef
    Osman KA, Tang B, Wang Y, Chen J, Yu F, Li L, Han X, Zhang Z, Yan J, Zheng Y, Yue B, Qiu F (2013) Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage. PLoS ONE 8:e79305PubMed PubMedCentral CrossRef
    Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127CrossRef
    Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo M, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee T, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, Rahman MU, Rainville LN, Rambani A, Reddy UK, Rong J, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Deynze A, Vaslin MFS, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang T, Dennis ES, Mayer KFX, Peterson DG, Rokhsar DS, Wang X, Schmutz J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427PubMed CrossRef
    Petrarulo M, Marone D, Ferragonio P, Cattivelli L, Rubiales D, De Vita P, Mastrangelo AM (2014) Genetic analysis of root morphological traits in wheat. Mol Genet Genomics 290(3):1–22
    Qu Y, Mu P, Zhang H, Chen CY, Gao Y, Tian Y, Wen F, Li Z (2008) Mapping QTLs of root morphological traits at different growth stages in rice. Genetica 133:187–200PubMed CrossRef
    Rahman H, Pekic S, Lazic-Jancic V, Quarrie SA, Shah SMA, Pervez A, Shah MM (2011) Molecular mapping of quantitative trait loci for drought tolerance in maize plants. Genet Mol Res 10:889–901PubMed CrossRef
    Rogers ED, Benfey PN (2015) Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol 32:93–98PubMed CrossRef
    Ron M, Dorrity MW, de Lucas M, Toal T, Hernandez RI, Little SA, Maloof JN, Kliebenstein DJ, Brady SM (2013) Identification of novel loci regulating interspecific variation in root morphology and cellular development in tomato. Plant Physiol 162:755–768PubMed PubMedCentral CrossRef
    Ruta N, Liedgens M, Fracheboud Y, Stamp P, Hund A (2010) QTLs for the elongation of axile and lateral roots of maize in response to low water potential. Theor Appl Genet 120:621–631PubMed CrossRef
    Shang L, Liang Q, Wang Y, Wang X, Wang K, Abduweli A, Ma L, Cai S, Hua J (2015) Identification of stable QTLs controlling fiber traits properties in multi-environment using recombinant inbred lines in Upland cotton (Gossypium hirsutum L.). Euphytica 205(3):1–12CrossRef
    Steele KA, Virk DS, Kumar R, Prasad SC, Witcombe JR (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crop Res 101:180–186CrossRef
    Sun F, Zhang J, Wang S, Gong W, Shi Y, Liu A, Li J, Gong J, Shang H, Yuan Y (2012) QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breeding 30:569–582CrossRef
    Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46:652–656PubMed CrossRef
    Tang S, Teng Z, Zhai T, Fang X, Liu F, Liu D, Zhang J, Liu D, Wang S, Zhang K, Shao Q, Tan Z, Paterson AH, Zhang Z (2015) Construction of genetic map and QTL analysis of fiber quality traits for Upland cotton (Gossypium hirsutum L.). Euphytica 201:195–213CrossRef
    Teng W, Han Y, Du Y, Sun D, Zhang Z, Qiu L, Sun G, Li W (2009) QTL analyses of seed weight during the development of soybean (Glycine max L. Merr.). Heredity 102:372–380PubMed CrossRef
    Tuberosa R, Sanguineti MC, Landi P, Michela Giuliani M, Salvi S, Conti S (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712PubMed CrossRef
    Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot 62:2485–2494PubMed CrossRef
    Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013) Control of root system architecture by deeper rooting 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102PubMed CrossRef
    Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMed CrossRef
    Wang S, Basten C, Zeng Z (2005) Windows QTL cartographer 2.5. North Carolina State University, Raleigh
    Wang Z, Wu X, Ren Q, Chang X, Li R, Jing R (2010) QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica 174:447–458CrossRef
    Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu Y, Wang J, Yu S (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103PubMed CrossRef
    Wei D, Cui K, Ye G, Pan J, Xiang J, Huang J, Nie L (2012) QTL mapping for nitrogen-use efficiency and nitrogen-deficiency tolerance traits in rice. Plant Soil 359:281–295CrossRef
    Würschum T, Liu W, Busemeyer L, Tucker MR, Reif JC, Weissmann EA, Hahn V, Ruckelshausen A, Maurer HP (2014) Mapping dynamic QTL for plant height in triticale. BMC Genet 15:59PubMed PubMedCentral CrossRef
    Yan JQ, Zhu J, He CX, Benmoussa M, Wu P (1998) Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics 150:1257–1265PubMed PubMedCentral
    Yan JB, Tang H, Huang YQ, Shi YG, Li JS, Zheng YL (2003) Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L.). Chinese Sci Bull 48:2601–2607CrossRef
    Yu J, Jung S, Cheng C, Ficklin SP, Lee T, Zheng P, Jones D, Percy RG, Main D (2014) CottonGen: a genomics, genetics and breeding database for cotton research. Nucleic Acids Res 42:1229–1236CrossRef
    Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMed PubMedCentral
    Zhang Q (2007) Strategies for developing green super rice. Proc Natl Acad Sci USA 104:16402–16409PubMed PubMedCentral CrossRef
    Zhang K, Zhang J, Ma J, Tang S, Liu D, Teng Z, Liu D, Zhang Z (2012) Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.). Mol Breeding 29:335–348CrossRef
    Zhang Z, Liu Z, Cui Z, Hu Y, Wang B, Tang J (2013) Genetic analysis of grain filling rate using conditional QTL mapping in maize. PLoS ONE 8:e56344PubMed PubMedCentral CrossRef
    Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride RC, Chen X, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen ZJ (2015a) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537PubMed CrossRef
    Zhang Y, Tan L, Zhu Z, Yuan L, Xie D, Sun C (2015b) TOND1 confers tolerance to nitrogen deficiency in rice. Plant J 81:367–376PubMed PubMedCentral CrossRef
    Zhu J (1995) Analysis of conditional genetic-effects and variance-components in developmental genetics. Genetics 141:1633–1639PubMed PubMedCentral
  • 作者单位:Lianguang Shang (1)
    Shihu Cai (1)
    Lingling Ma (1)
    Yumei Wang (1) (2)
    Abdugheni Abduweli (1)
    Meiyan Wang (1)
    Xiaocui Wang (1)
    Qingzhi Liang (1) (3)
    Jinping Hua (1)

    1. Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
    2. Research Institute of Cash Crop, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
    3. South Subtropical Crops Research Institutes, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
    Plant Sciences
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5060
文摘
Roots are vital to plant anchorage and efficient uptake of water and nutrients, and play an important role in environmental fitness, performance and yield formation in crops. The main objective of this study was to dissect the developmental behavior of seedling root traits at different developmental stages, and try to explore stress effect of nitrogen deficiency at seedling stage by mapping quantitative trait loci (QTLs) using an intraspecific population of recombinant inbred lines in Upland cotton (Gossypium hirsutum L.). Totally, 34 QTLs and 27 conditional QTLs for root length, root surface area, root volume, number of root tips and number of root forks were detected, respectively, in which 18 were congruent QTLs. The performance of five seedling root traits and QTLs showed obvious dynamic characteristics at three developmental stages. Special conditional QTLs were detected by QTL mapping strategy, in which conditional QTLs with different effects were identified at certain stages, demonstrating that the expression of genes showed temporal characteristics during root development. After nitrogen deprivation and deficiency stress for five days, a total of 11 QTLs were identified. Of these, ten QTLs were also identified in previous three stages under normal nutritional condition, and one QTL qNRT-chr19-1 referring number of root tips was newly detected, which suggested that it might be related to stress response of N-deficiency. After nitrogen deprivation for eight days, a total of 5 QTLs for plant height, maximum root length, fresh weight of root, and root/shoot ratio were identified. These QTLs and dynamic QTLs might offer different clues to understand the developmental mechanism and genetic basis of seedling root traits and to select root trait architecture in breeding program of Upland cotton. Keywords Seedling root Dynamic QTLs Nitrogen deficiency Upland cotton

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700