用户名: 密码: 验证码:
Finite element analysis of chip formation and residual stresses induced by sequential cutting in side milling with microns to sub-micron uncut chip thickness and finite cutting edge radius
详细信息    查看全文
  • 作者:Nejah Tounsi ; Tahany El-Wardany
  • 关键词:Finite element method (FEM) ; Down milling ; Sequential cuts ; Ductile machining regime ; Chip formation ; Residual stresses (RS)
  • 刊名:Advances in Manufacturing
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:3
  • 期:4
  • 页码:309-322
  • 全文大小:1,953 KB
  • 参考文献:1.Dehmani H, Salvatore F, Hamdi H (2013) Numerical study of residual stress induced by multi-steps orthogonal cutting. The 14th CIRP conference on modeling of machining operations, Turin
    2.Zhao HW, Liu C, Cui T et al (2013) Influences of sequential cuts on micro-cutting process studied by smooth particle hydrodynamic (SPH). Appl Surf Sci 284:366鈥?71CrossRef
    3.Schulze V, Osterried J, Strau脽 T et al (2012) Analysis of surface layer characteristics for sequential cutting operations. J Heat Treat Mater 67(6):347鈥?56CrossRef
    4.Schulze V, Osterried J, Strau脽 T (2011) FE analysis on the influence of sequential cuts on component conditions for different machining strategies. Proc Eng 19:318鈥?23CrossRef
    5.Li JL, Jing LL, Chen M (2009) An FEM study on residual stresses induced by high-speed end-milling of hardened steel SKD11. J Mater Process Technol 209(9):4515鈥?520CrossRef
    6.Outeiro JC, Umbrello D, M鈥橲aoubi R (2006) Experimental and FEM analysis of cutting sequence on residual stresses in machined layers of AISI 316L steel. Mater Sci Forum 524鈥?25:179鈥?84CrossRef
    7.Ee KC, Dillon OW Jr, Jawahir IS (2005) Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius. Int J Mech Sci 47:1611鈥?628CrossRef MATH
    8.Guo YB, Liu CR (2002) FEM analysis of mechanical state on sequentially machined surfaces. Int J Mach Sci Technol 6(1):21鈥?1CrossRef
    9.Liu CR, Guo YB (2000) Finite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layer. Int J Mach Sci Technol 42:1069鈥?086CrossRef MATH
    10.Sasahara H, Obikawa T, Shirakashi T (1996) FEM analysis of cutting sequence effect on mechanical characteristics in machined layer. J Mater Proc Technol 62:448鈥?53CrossRef
    11.DEFORM 2D庐. FEM software package, revision 10. Scientific Forming Technologies Corporation
    12.Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 48:275鈥?88CrossRef
    13.Calamaz M, Coupard D, Nouari M et al (2011) Numerical analysis of chip formation and shear localisation processes in machining the Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 52:887鈥?95CrossRef
    14.Ozel T, Thepsonthi T, Ulutan D et al (2011) Experiments and finite element simulations on micro-milling of Ti-6Al-4V alloy with uncoated and CBN coated micro-tools. CIRP Ann Manuf Technol 60:85鈥?8CrossRef
    15.Queheillalt DT, Choi BW, Schwartz DS et al (2000) Creep expansion of porous Ti-6Al-4V sandwich structures. Metall Mater Trans A 31:261鈥?73CrossRef
    16.Chen L, El-Wardany TI, Harris WC (2004) Modelling the effects of flank wear land and chip formation on residual stresses. CIRP Ann 53(1):95鈥?8CrossRef
    17.Alvarez R, Domingo R, Sebastian MA (2011) The formation of saw toothed chip in a titanium alloy: influence of constitutive models. J Mech Eng 57:739鈥?49CrossRef
    18.脰zel T, Sima M, Srivastava AK (2010) Finite element simulation of high speed machining Ti-6Al-4V alloy using modified material models. Trans NAMRI/SME 38:49鈥?6
    19.Matsumoto Y, Barash MM, Liu CR (1986) Effects of hardness on the surface integrity of AISI 4340 steel, ASME. J Eng Ind 108:169鈥?75CrossRef
    20.Wu DW, Matsumoto Y (1990) The effect of hardness on residual stresses in orthogonal machining of AISI 4340 steel. J Eng Ind 112(3):245鈥?52CrossRef
  • 作者单位:Nejah Tounsi (1)
    Tahany El-Wardany (2)

    1. Open Manufacturing Solutions Inc., Pierrefonds, QC, Canada
    2. United Technologies Research Center, East-Hartford, CT, US
  • 刊物主题:Manufacturing, Machines, Tools; Control, Robotics, Mechatronics; Nanotechnology and Microengineering;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2195-3597
文摘
In this paper, the effect of four sequential cuts in side milling of Ti6Al4V on chip formation and residual stresses (RS) are investigated using finite element method (FEM). While the open literature is limited mainly to the studies of orthogonal sequential cutting with the constant uncut chip thickness greater than 0.01 mm, it is suggested herein to investigate not only the variable uncut chip thickness which characterises the down milling process, but also the uncut chip thickness in the sub-micron range using a finite cutting edge radius. For the resulting ductile machining regime, the characteristics of the chip morphology, the force profiles, the plastic deformation and temperature distributions have been analyzed. Furthermore, this study revealed that the RS should be extracted toward the area where the insert exits the workpiece in the FE simulation of the down-milling process. The simulation of a number of sequential cuts due to the consecutive engagements of the insert is required in order to capture the gradual accumulation of the RS before reaching an asymptotic convergence of the RS profile. The predicted RS are in reasonable agreement with the experimental results. Keywords Finite element method (FEM) Down milling Sequential cuts Ductile machining regime Chip formation Residual stresses (RS)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700