用户名: 密码: 验证码:
Calcium influx activates adenylyl cyclase 8 for sustained insulin secretion in rat pancreatic beta cells
详细信息    查看全文
文摘
Aims/hypothesis Insulin is a key metabolic regulator in health and diabetes. In pancreatic beta cells, insulin release is regulated by the major second messengers Ca2+ and cAMP: exocytosis is triggered by Ca2+ and mediated by the cAMP/protein kinase A (PKA) signalling pathway. However, the causal link between these two processes in primary beta cells remains undefined. Methods Time-resolved confocal imaging of fluorescence resonance energy transfer signals was performed to visualise PKA activity, and combined membrane capacitance recordings were used to monitor insulin secretion from patch-clamped rat beta cells. Results Membrane depolarisation-induced Ca2+ influx caused an increase in cytosolic PKA activity via activating a Ca2+-sensitive adenylyl cyclase 8 (ADCY8) subpool. Glucose stimulation triggered coupled Ca2+ oscillations and PKA activation. ADCY8 knockdown significantly reduced the level of depolarisation-evoked PKA activation and impaired replenishment of the readily releasable vesicle pool. Pharmacological inhibition of PKA by two inhibitors reduced depolarisation-induced PKA activation to a similar extent and reduced the capacity for sustained vesicle exocytosis and insulin release. Conclusions/interpretation Our findings suggest that depolarisation-induced Ca2+ influx plays dual roles in regulating exocytosis in rat pancreatic beta cells by triggering vesicle fusion and replenishing the vesicle pool to support sustained insulin release. Therefore, Ca2+ influx may be important for glucose-stimulated insulin secretion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700