用户名: 密码: 验证码:
Paleoproterozoic granitic gneisses of the Dinggye and LhagoiKangri areas from the higher and northern Himalaya, Tibet: Geochronology and implications
详细信息    查看全文
  • 作者:QunAn Liao (1)
    DeWei Li (1)
    Lian Lu (1)
    YieMing Yuan (1)
    LingLin Chu (1)
  • 关键词:Higher Himalaya ; Paleoproterozoic ; granitic gneiss ; Indian ; basement ; geochronology
  • 刊名:Science China Earth Sciences
  • 出版年:2008
  • 出版时间:February 2008
  • 年:2008
  • 卷:51
  • 期:2
  • 页码:240-248
  • 全文大小:7254KB
  • 参考文献:1. Burg J P, Guiraud M, Chen G M, et al. Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China). Earth Planet Sci Lett, 1984, 69: 391-00 CrossRef
    2. Zhang Q, Zhou Y, Li D, et al. Principal features of the gneissic dome and its peripheral metamorphic zones in Kangma of Xizang, China. Sci Geol Sin, 1986, 2: 125-33
    3. Lee J, Dinklage W S, Hacker B R, et al. Evolution of the Kangmar Dome, southern Tibet: structural, petrologic and thermochronologic constraints. Tectonics, 2000, 19: 872-96 CrossRef
    4. Sharma K K, Rashid S A. geochemical evolution of peraluminous Paleoproterozoic Bandal orthogneiss NW, Himalaya, Himachal Pradesh, India: implications for the ancient crustal growth in the Himalaya. J Asian Earth Sci, 2001, 19: 413-28 CrossRef
    5. Treloar P J, Rex D C. Cooling and uplift histories of the crystalline thrust stack of the Indian plate internal zones west of Nanga Parbat, Pakistan Himalaya. Tectonophysics, 1990, 180: 323-49 CrossRef
    6. Dikshitulu G R, Pandey B K, Krishna V, et al. Rb-Sr systematics of granitoids of central Gneissic complex, Arunachal Himalaya: implications on tectonism, stratigraphy and source. J Geol Soci India, 1995, 45: 51-6
    7. Rao P S. Kameng orogeny (1.8-.9 Ga) from the isotopic evidence on the Bomdila orthogneisses, Kameng sector (NEFA), India (Abstract Volume,13HKT International Workshop, Peshawar, April 20-2, 1998). Geol Bull, University of Peshawar, 1998, 31: 259-62
    8. Le Fort P, Man Ra? S. Pre-Tertiary felsic magmatism of the Nepal Himalaya: Recycling of continental crust. J Asian Earth Sci, 1999, 17: 607-28 CrossRef
    9. Singh S, Barley M E, Brown S J, et al. SHRIMP U-Pb in zircon geochronology of the Chor granitoid: Evidence for Neoproterozoic magmatism in the Lesser Himalayan granite belt of NW India. Precambrian Res, 2002, 18: 285-92 CrossRef
    10. Xu R H, Sharer U, Allegre C J. Magmatism and metamorphism in the Lhasa Block (Tibet): a U-Pb geochronology study. J Geol, 1985, 93: 42-7 CrossRef
    11. Acharyya S K. Stratigraphy and tectonic feature of the Eastern Himalaya. In: Saklani P S, ed. Tectonic Geology of the Himalaya. Newdelhi: Tody and Tomorrow’s Pub, 1977. 243-68
    12. Foster G L. The pre-Neogene thermal history of the Nanga Parbat Haramosh Massif and the NW Himalaya. Dissertation for the Doctoral Degree. The Open University, United Kingdom, 2000. 345
    13. Thakur V C. Tectonics of the central crystallites of western Himalaya. Tectonophysics, 1980, 62:141-54 CrossRef
    14. Scharer U, Xu R, Allegre C. U-(Th)-Pb systematics and ages of Himalayan leucogranites, south Tibet. Earth Planet Sci Lett, 1986, 77: 35-8 CrossRef
    15. Xu Z Q, Yang J S, Liang F H, et al. Pan-African and Early Paleozoic orogenic events in the Himalaya terranes: Inference from SHRIMP U-Pb zircon ages. Acta Petrol Sin (in Chinese), 2005, 21(1): 1-2
    16. Sun Z M, Dong H, Liao G Y. The granitic gneisses from the Namjagbarwa Group Complex within the eastern Himalayan syntaxis, Xizang. Sedimen Geol Tethyan Geol (in Chinese), 2005, 25(4): 1-0
    17. Quigley M, Yu L, Liu X, et al. 40Ar/39Ar thermochronology of the Kampa Dome, southern Tibet: Implications for tectonic evolution of the North Himalayan gneiss domes. Tectonophysics, 2006, 421: 269-97 CrossRef
    18. DeCelles P G, Gehrels G E, Quade J, et al. Tectonic Implications of U-Pb Zircon Ages of the Himalayan Orogenic Belt in Nepal. Science, 2000, 288(21): 497-99 CrossRef
    19. Parrish R R, Hodges K V. Isotopic constraints on the age and provenance of the lesser and greater Himalayan sequences, Nepalese Himalaya. Geol Soc Am Bull, 1996, 108: 904-11 CrossRef
    20. Grujic D, Hollister L S, Parrish R R. Himalayan metamorphic sequence as an orogenic channel: Insight from Bhutan. Earth Planet Sci Lett, 2002, 198: 177-91 CrossRef
    21. Liao Q A, Li D W, Yi S H, et al. Petrologic and Geologic Significance of Garnet Pyroxenite and Mafic Granulites from High Himalayan Region, Tibet. Earth Sci—J China Univer Geosci (in Chinese), 2003, 28(6): 627-33
    22. Lombardo B, Rolfo F. Two contrasting eclogite types in the Himalayas: implications for the Himalayan orogeny. J Geodyn, 2000, 30: 37-0 CrossRef
    23. Rubatto D, Gebauer D. Use of cathodeluminescence for U/ Pb zircon dating by ion microprobe: Some examples on the Western Alps. In: Pagel M, Barbin V, Blanc P, et al, eds. Cathdoluminescence in Geosciences. Berlin-Heidelberg-New York: Springer, 2000. 373-00
    24. Song B, Zhang Y, Wan Y, et al. Mount making and procedure of the SHRIMP dating. Geol Rev (in Chinese with English abstract), 2002, 48 (Supp): 26-0
    25. Claoué-Long J C, Compston W, Roberts J, et al. Two Carboniferous Ages: A Comparison of SHRIMP Zircon Dating with Conventional Zircon Ages and 40Ar/39Ar Analysis. In: Berggren W A, Kent D V, Aubrey M P, et al, eds. Geochronology Time Scales and Global Stratigraphic Correlation. Soc Sediment Geol Spec Publication, 1995, 54: 3-1
    26. Ludwig K R. Using Isoplot/EX, version 2, a geolocronological Toolkit for Microsoft Excell. Berkelry: Geochronological Center Special Publication, 1999. 47
    27. Ludwig K R. SQUID 1.02, a User’s Manual. Berkeley: Berkeley Geochronology Center Special Publication, 2002
    28. Rubatto D, Gebauer D. Use of Cathodoluminescence for U-Pb Zircon Dating by IOM Microprobe: Some Examples from the Western Alps. Cathodoluminescence in Geoscience. Berlin-Heidelberg: Springer-Verlag G, 2000. 373-00
    29. Moeller A, O’Brien P J, Kennedy A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland (SW Norway). Geol Soc Spe Pub, 2003, 220: 65-1
    30. Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol, 2002, 184: 123-38 CrossRef
    31. Whitehuse M. Combing in Situ Zircon RRR and U-Th-Pb Geochronology: A Petrogenetic Dating Tool. J Conference Abstracts, 2002, 5(2): 1086
    32. Hermann J. Allanite: Thorium and light rare earth element carrier in subducted crust. Chem Geol, 2002, 192: 289-06 CrossRef
    33. Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8 Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Sci Rev 2002, 59: 125-62 CrossRef
    34. Gehrels G E, DeCelles P G, Ojha T P, et al. Geologic and U-Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya. J Asian Earth Sci, 2006, 28: 1-41 CrossRef
    35. Ren L D, Chen B W. The metamorphism and granitic features of the north Himalayas and their comparisons with that of the high Himalayan belt. Geol Bull China (in Chinese), 2002, 21(7): 397-04
    36. Grujic D, Casey M, Davidson C, et al. Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: Evidence from quartz microfabrics. Tectonophysics, 1996, 260: 21-3 CrossRef
    37. Wu C, Nelson K D, Wortman G, et al. Yadong cross structure and South Tibetan detachment in the east central Himalaya (89°-0°E). Tectonics, 1998, 17: 28-5 CrossRef
    38. Vannay J C, Grasemann B. Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. Geol Mag, 2001, 138: 253-76 CrossRef
    39. Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 2001, 414: 738-42 CrossRef
    40. Searle M P, Szulc A G. Channel flow and ductile extrusion of the high Himalayan slab-the Kangchenjunga-Darjeeling profile, Sikkim Himalaya. J Asian Earth Sci, 2005, 25: 173-85 CrossRef
    41. Amidon W H, Burbank D W, Gehrels G E. U-Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth Planet Sci Lett, 2005, 235: 244-60 CrossRef
    42. Tonarini S, Lombardo B, Ferrara G, et al. Partial melting in the Namche Migmatite of Khumbu Himal (Nepal Himalaya). Mineral Petrogr Acta, 1994, 37: 277-94
    43. Carosi R, Lombardo B, Musumeci G, et al. Geology of the Higher Himalayan Crystallines in Khumbu Himal (Eastern Nepal). J Asian Earth Sci, 1999, 17: 785-03 CrossRef
  • 作者单位:QunAn Liao (1)
    DeWei Li (1)
    Lian Lu (1)
    YieMing Yuan (1)
    LingLin Chu (1)

    1. Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
  • ISSN:1869-1897
文摘
Granitic gneisses have been widely found in crystalline rocks in the Dinggye area of the Higher Himalaya (HHM) and the LhagoiKangri area of the North Himalaya (NHM), Tibet. In the HHM, the gneisses intruded in the granulite-amphibolite facies metamorphosed sedimentary rocks, known as Nyalam group. In the NHM, the gneisses intruded in the amphibolite facies metamorphosed ones, known as LhagoiKangri group. These granitic gneisses are peraluminous monzonitic granites in terms of their mineral assemblage, and are considered as being derived from metamorphosed sedimentary rocks by anatexis based on the transitional relationship of the gneisses with their migmatitized wall rocks. Zircons are similar in crystal shape and interior structure from both gneisses. Most of them are euhedral or subhedral elongated prism-shaped transparent crystals, with fine oscillatory zoning, showing the magmatic genesis. Some of them are short prism-shaped and with relict core inherited from magma source and oscillatory zoning mantle crystallized from magma. SHRIMP U-Pb dating of zicons shows that both the granitic gneisses in the HHM and NHM are Paleoproterozoic (1811.6±2.9 Ma and 1811.7±7.2 Ma, respectively). These ages are similar to those (1815 to 2120 Ma) from granitic gneiss which is widely distributed in the Lesser Himalaya (LHM). The ages of inherited zircons (>2493.9±7.0 Ma, 2095.8±8.8 Ma, 1874±29 Ma) exhibit the possible presence of several thermal events in Paleoproterozoic. All of the ages suggest the same India basement beneath the different units in Himalaya area, and do not support the idea that the HHM and NHM are accretionary terranes in Pan-Africa orogenic event. The fact that the basement in HHM is as old as or even younger than LHM is inconsistent with the presently prevalent orogenic models such as either extrusion of low-viscosity mid-crust or orogenic channel.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700