用户名: 密码: 验证码:
Assessment of off-axis and in-line electron holography for measurement of potential variations in Cu(In,Ga)Se2 thin-film solar cells
详细信息    查看全文
  • 作者:Debora Keller ; Stephan Buecheler…
  • 关键词:In ; line ; Off ; axis ; Holography ; Transport of intensity equation (TIE) ; Mean inner potential (MIP) ; Cu(In ; Ga)Se2 ; Chalcopyrite ; Solar cell
  • 刊名:Advanced Structural and Chemical Imaging
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:2
  • 期:1
  • 全文大小:5,180 KB
  • 参考文献:1.Jackson, P., Hariskos, D., Wuerz, R., Kiowski, O., Bauer, A., Friedlmeier, T.M., Powalla, M.: Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. Physica status solidi (RRL) – Rapid Res Lett 9(1), 28–31 (2015). doi:10.​1002/​pssr.​201409520
    2.Werner, J.H., Mattheis, J., Rau, U.: Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In, Ga)Se2. Thin Solid Films 480–481, 399–409 (2005). doi:10.​1016/​j.​tsf.​2004.​11.​052 CrossRef
    3.Siebentritt, S.: What limits the efficiency of chalcopyrite solar cells? Solar Energy Mat Solar Cells 95(6), 1471–1476 (2011). doi:10.​1016/​j.​solmat.​2010.​12.​014 CrossRef
    4.Wei, S.-H., Zhang, S.B., Zunger, A.: Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Appl Phys Lett 72(24), 3199–3201 (1998). doi:10.​1063/​1.​121548 CrossRef
    5.Han, S.-H., Hasoon, F.S., Pankow, J.W., Hermann, A.M., Levi, D.H.: Effect of Cu deficiency on the optical bowing of chalcopyrite CuIn1-xGaxSe2. Appl Phys Let 87(15), 151904–1519043 (2005). doi:10.​1063/​1.​2089154 CrossRef
    6.Schmidt, S.S.: Microscopic properties of grain boundaries in Cu(In,Ga)Se2 and CuInS2 thinfilm solar cells studied by transmission electron microscopy. PhD thesis, HZB-Berichte (2011). doi: 10.​5442/​d0012
    7.Siebentritt, S., Igalson, M., Persson, C., Lany, S.: The electronic structure of chalcopyrites—bands, point defects and grain boundaries. Prog Photovol Res Appl 18(6), 390–410 (2010). doi:10.​1002/​pip.​936 CrossRef
    8.Abou-Ras, D., Schaffer, B., Schaffer, M., Schmidt, S.S., Caballero, R., Unold, T.: Direct insight into grain boundary reconstruction in Polycrystalline Cu(In, Ga)Se2 with Atomic Resolution. Phys Rev Lett 108(7), 075502 (2012). doi:10.​1103/​PhysRevLett.​108.​075502 CrossRef
    9.Choi, P.-P., Cojocaru-Mirédin, O., Wuerz, R.: Compositional gradients and impurity distributions in CuInSe2 thin-film solar cells studied by atom probe tomography. Surf Interf Anal 44(11–12), 1386–1388 (2012). doi:10.​1002/​sia.​4948 CrossRef
    10.Gabor, D.: A new microscopic principle. Nature 161(4098), 777–778 (1948). doi:10.​1038/​161777a0 CrossRef
    11.Rau, W.D., Schwander, P., Baumann, F.H., Höppner, W., Ourmazd, A.: Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys Rev Lett 82(12), 2614–2617 (1999). doi:10.​1103/​PhysRevLett.​82.​2614 CrossRef
    12.Twitchett-Harrison, A.C., Dunin-Borkowski, R.E., Midgley, P.A.: Mapping the electrical properties of semiconductor junctions-the electron holographic approach. Scanning 30(4), 299–309 (2008). doi:10.​1002/​sca.​20125 CrossRef
    13.Wang, Y.G., Dravid, V.P.: Determination of electrostatic characteristics at a 24 [001] tilt grain boundary in a SrTiO3 bicrystal by electron holography. Philos Mag Lett 82(8), 425–432 (2002). doi:10.​1080/​0950083021014646​1 CrossRef
    14.Chakraborty, P.S., McCartney, M.R., Li, J., Gopalan, C., Singisetti, U., Goodnick, S.M., Thornton, T.J., Kozicki, M.N.: Electron holographic characterization of nanoscale charge distributions for ultra shallow PN junctions in Si. Physica E: Low-dimensional Systems and Nanostructures 19(1–2), 167–172 (2003). doi:10.​1016/​S1386-9477(03)00302-3
    15.Gan, Z., Perea, D.E., Yoo, J., Picraux, S.T., Smith, D.J., McCartney, M.R.: Mapping electrostatic profiles across axial p-n junctions in Si nanowires using off-axis electron holography. Appl Phys Lett 103(15), 153108 (2013). doi:10.​1063/​1.​4824775 CrossRef
    16.Yazdi, S., Kasama, T., Beleggia, M., Samaie Yekta, M., McComb, D.W., Twitchett-Harrison, A.C.: Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography. Ultramicroscopy 152C, 10–20 (2014). doi:10.​1016/​j.​ultramic.​2014.​12.​012
    17.McCartney, M.R., Ponce, F.A., Cai, J., Bour, D.P.: Mapping electrostatic potential across an AlGaN/InGaN/AlGaN diode by electron holography. Appl Phys Lett 76(21), 3055–3057 (2000). doi:10.​1063/​1.​126577 CrossRef
    18.Cai, J., Ponce, F.A.: Determination by Electron Holography of the Electronic Charge Distribution at Threading Dislocations in Epitaxial GaN. Physica status solidi (a) 192(2), 407–411 (2002). doi:10.​1002/​1521-396X(200208) CrossRef
    19.Chung, S., Johnson, S.R., Ding, D., Zhang, Y.-H., Smith, D.J., McCartney, M.R.: Quantitative dopant profiling of p-n junction in InGaAs/AlGaAs light-emitting diode using off-axis electron holography. J Vacuum Sci Technol B 28(1), 1–11114 (2010). doi:10.​1116/​1.​3244575 CrossRef
    20.Petersen, T.C., Keast, V.J., Paganin, D.M.: Quantitative TEM-based phase retrieval of MgO nano-cubes using the transport of intensity equation. Ultramicroscopy 108(9), 805–815 (2008). doi:10.​1016/​j.​ultramic.​2008.​01.​001 CrossRef
    21.Donnadieu, P., Lazar, S., Botton, G.A., Pignot-Paintrand, I., Reynolds, M., Perez, S.: Seeing structures and measuring properties with transmission electron microscopy images: A simple combination to study size effects in nanoparticle systems. Appl Phys Lett 94(26), 263116 (2009). doi:10.​1063/​1.​3168525 CrossRef
    22.Volkov, V.V., Zhu, Y., De Graef, M.: A new symmetrized solution for phase retrieval using the transport of intensity equation. Micron 33(5), 411–416 (2002). doi:10.​1016/​S0968-4328(02)00017-3 CrossRef
    23.Beleggia, M., Schofield, M.A., Volkov, V.V., Zhu, Y.: On the transport of intensity technique for phase retrieval. Ultramicroscopy 102(1), 37–49 (2004). doi:10.​1016/​j.​ultramic.​2004.​08.​004 CrossRef
    24.Koch, C.T.: Towards full-resolution inline electron holography. Micron 63, 69–75 (2014). doi:10.​1016/​j.​micron.​2013.​10.​009 CrossRef
    25.Bhattacharyya, S., Koch, C.T., Rühle, M.: Projected potential profiles across interfaces obtained by reconstructing the exit face wave function from through focal series. Ultramicroscopy 106(6), 525–538 (2006). doi:10.​1016/​j.​ultramic.​2006.​01.​007 CrossRef
    26.Zhang, X., Oshima, Y.: Practical procedure for retrieval of quantitative phase map for two-phase interface using the transport of intensity equation. Ultramicroscopy 158, 49–55 (2015). doi:10.​1016/​j.​ultramic.​2015.​06.​015 CrossRef
    27.Abou-Ras, D., Schmidt, S.S., Caballero, R., Unold, T., Schock, H.-W., Koch, C.T., Schaffer, B., Schaffer, M., Choi, P.-P., Cojocaru-Mirédin, O.: Confined and chemically flexible grain boundaries in polycrystalline compound semiconductors. Adv Energ Mat 2(8), 992–998 (2012). doi:10.​1002/​aenm.​201100764 CrossRef
    28.Dietrich, J., Abou-Ras, D., Schmidt, S.S., Rissom, T., Unold, T., Cojocaru-Mirédin, O., Niermann, T., Lehmann, M., Koch, C.T., Boit, C.: Origins of electrostatic potential wells at dislocations in polycrystalline Cu(In, Ga)Se2 thin films. J Appl Phys 115(10), 103507 (2014). doi:10.​1063/​1.​4867398 CrossRef
    29.Lehmann, M., Lichte, H.: Tutorial on off-axis electron holography. Microsc Microanal 8(06), 447–466 (2002). doi:10.​1017/​S143192760202014​7 CrossRef
    30.Paganin, D., Nugent, K.A.: Noninterferometric phase imaging with partially coherent light. Phys Rev Lett 80(12), 2586–2589 (1998). doi:10.​1103/​PhysRevLett.​80.​2586 CrossRef
    31.Martin, A.V., Chen, F.-R., Hsieh, W.-K., Kai, J.-J., Findlay, S.D., Allen, L.J.: Spatial incoherence in phase retrieval based on focus variation. Ultramicroscopy 106(10), 914–924 (2006). doi:10.​1016/​j.​ultramic.​2006.​04.​008 CrossRef
    32.Cooper, D.: Active dopant profiling in the TEM by off-axis electron holography. In: Claverie, A., Mouis, M. (eds.) Transmission electron microscopy in micro-nanoelectronics, p. 264. John Wiley and Sons, Inc., Hoboken. (2012)
    33.Rez, D., Rez, P., Grant, I.: Dirac-Fock calculations of X-ray scattering factors and contributions to the mean inner potential for electron scattering. Acta Crystallographica Sect A Found Crystallograph 50(4), 481–497 (1994). doi:10.​1107/​S010876739301320​0 CrossRef
    34.Weickenmeier, A., Kohl, H.: Computation of absorptive form factors for high-energy electron diffraction. Acta Crystallographica Sect A Foundation Crystallograph 47(5), 590–597 (1991). doi:10.​1107/​S010876739100480​4 CrossRef
    35.Peng, L.-M.: Electron scattering factors of ions and their parameterization. Acta Crystallographica Sect A Found Crystallograp 54(4), 481–485 (1998). doi:10.​1107/​S010876739800190​1 CrossRef
    36.Chirilă, A., Buecheler, S., Pianezzi, F., Bloesch, P., Gretener, C., Uhl, A.R., Fella, C., Kranz, L., Perrenoud, J., Seyrling, S., Verma, R., Nishiwaki, S., Romanyuk, Y.E., Bilger, G., Tiwari, A.N.: Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films. Nat Mat 10(11), 857–861 (2011). doi:10.​1038/​nmat3122 CrossRef
    37.Chirilă, A., Reinhard, P., Pianezzi, F., Bloesch, P., Uhl, A.R., Fella, C., Kranz, L., Keller, D., Gretener, C., Hagendorfer, H., Jaeger, D., Erni, R., Nishiwaki, S., Buecheler, S., Tiwari, A.N.: Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nat Mat 12(12), 1107–1111 (2013). doi:10.​1038/​nmat3789 CrossRef
    38.Teague, M.R.: Deterministic phase retrieval: a Green’s function solution. J Optical Soc Am 73(11), 1434–1441 (1983). doi:10.​1364/​JOSA.​73.​001434 CrossRef
    39.De Graef, M.: Lorentz microscopy: Theoretical basis and image simulations. In: Zhu, MDGaY (ed.) Experimental Methods in the Physical Sciences. Magnetic Imaging and Its Applications to Materials, vol. 36, pp. 27–67. Academic Press, London (2001). doi:10.​1016/​S1079-4042(01)80036-9
    40.McVitie, S., Ngo, D.T.: Quantitative measurements of phase using the transport of intensity equation. J Phys Conf Series 126(1), 012041 (2008). doi:10.​1088/​1742-6596/​126/​1/​012041 CrossRef
    41.Ishizuka, K., Allman, B.: Phase measurement of atomic resolution image using transport of intensity equation. J Electron Microsc 54(3), 191–197 (2005). doi:10.​1093/​jmicro/​dfi024 CrossRef
    42.Barty, A., Paganin, D., Nugent, K.: Phase retrieval in lorentz microscopy. In: Zhu, Y., De Graef, M. (eds.) Experimental Methods in the Physical Sciences. Magnetic Imaging and Its Applications to Materials, vol. 36, pp. 137–166. Academic Press, London (2001). 10.​1016/​S1079-4042(01)80039-4
    43.Zhang, X., Oshima, Y.: Experimental evaluation of spatial resolution in phase maps retrieved by transport of intensity equation. Microscopy, 045 (2015). doi: 10.​1093/​jmicro/​dfv045
    44.Waller, L., Tian, L., Barbastathis, G.: Transport of Intensity phase-amplitude imaging with higher order intensity derivatives. Optics Express 18(12), 12552–12561 (2010). doi:10.​1364/​OE.​18.​012552 CrossRef
    45.Soto, M., Acosta, E.: Improved phase imaging from intensity measurements in multiple planes. Appl Optics 46(33), 7978–7981 (2007). doi:10.​1364/​AO.​46.​007978 CrossRef
    46.Malis, T., Cheng, S.C., Egerton, R.F.: EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Microsc Tech 8(2), 193–200 (1988). doi:10.​1002/​jemt.​1060080206 CrossRef
    47.Erni, R., Rossell, M.D., Nakashima, P.N.H.: Optimization of exit-plane waves restored from HRTEM through-focal series. Ultramicroscopy 110(2), 151–161 (2010). doi:10.​1016/​j.​ultramic.​2009.​10.​015 CrossRef
    48.Harscher, A., Lichte, H.: Experimental study of amplitude and phase detection limits in electron holography. Ultramicroscopy 64(1–4), 57–66 (1996). doi:10.​1016/​0304-3991(96)00019-8 CrossRef
    49.McLeod, R.A., Bergen, M., Malac, M.: Phase measurement error in summation of electron holography series. Ultramicroscopy 141, 38–50 (2014). doi:10.​1016/​j.​ultramic.​2014.​03.​001 CrossRef
    50.Cooper, D., Truche, R., Rivallin, P., Hartmann, J.-M., Laugier, F., Bertin, F., Chabli, A., Rouviere, J.-L.: Medium resolution off-axis electron holography with millivolt sensitivity. Appl Phys Lett 91(14), 143501 (2007). doi:10.​1063/​1.​2794006 CrossRef
    51.Pennington, R.S., Boothroyd, C.B., Dunin-Borkowski, R.E.: Surface effects on mean inner potentials studied using density functional theory. Ultramicroscopy 159(1), 34–45 (2015). doi:10.​1016/​j.​ultramic.​2015.​07.​011 CrossRef
  • 作者单位:Debora Keller (1) (2)
    Stephan Buecheler (1)
    Patrick Reinhard (1)
    Fabian Pianezzi (1)
    Etienne Snoeck (3)
    Christophe Gatel (3)
    Marta D. Rossell (2)
    Rolf Erni (2)
    Ayodhya N. Tiwari (1)

    1. Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600, Duebendorf, Switzerland
    2. Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600, Duebendorf, Switzerland
    3. CNRS CEMES, 29, rue Jeanne Marvig, 31055, Toulouse, France
  • 刊物类别:Characterization and Evaluation of Materials; Spectroscopy/Spectrometry; Biological Microscopy;
  • 刊物主题:Characterization and Evaluation of Materials; Spectroscopy/Spectrometry; Biological Microscopy;
  • 出版者:Springer International Publishing
  • ISSN:2198-0926
文摘
Electron holography is employed to study variations of the electrostatic crystal potential in Cu(In,Ga)Se2 (CIGS) thin-film solar cells at different length scales: Long-range potential variations across the layer structure of the solar cell as well as inhomogeneities within the layers are analyzed by off-axis holography. In-line holography is applied to examine the local potential variation across a CIGS grain boundary. The phase reconstruction from a focal series is performed by a modified transport of intensity equation (TIE) which is optimized to reduce common artifacts. For comparison, three different microscopes of different optical configurations were used for in-line holography. Based on the results, the impact of the used microscope as well as further acquisition parameters on the in-line holography measurement is assessed. The measured potential variations are discussed considering the effect of different possible sources that may cause potential fluctuations. It is found that most of the variations are best explained by mean inner potential fluctuations rather than by inhomogeneities of the electronic properties. Finally, the present resolution limit of both methods is discussed regarding the feasibility of future electronic characterization of CIGS by holography. Keywords In-line Off-axis Holography Transport of intensity equation (TIE) Mean inner potential (MIP) Cu(In,Ga)Se2 Chalcopyrite Solar cell

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700