用户名: 密码: 验证码:
Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9
详细信息    查看全文
  • 作者:Jiahui Shao (1)
    Zhihui Xu (1)
    Nan Zhang (1)
    Qirong Shen (1)
    Ruifu Zhang (1) (2)

    1. National Engineering Research Center for Organic-based Fertilizers
    ; and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization ; Nanjing Agricultural University ; Nanjing ; 210095 ; People鈥檚 Republic of China
    2. Key Laboratory of Microbial Resources Collection and Preservation
    ; Ministry of Agriculture ; Institute of Agricultural Resources and Regional Planning ; Chinese Academy of Agricultural Sciences ; Beijing ; 100081 ; People鈥檚 Republic of China
  • 关键词:Bacillus amyloliquefaciens SQR9 ; Plant ; growth ; promoting factors ; Indole ; 3 ; acetic acid ; Greenhouse experiment
  • 刊名:Biology and Fertility of Soils
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:51
  • 期:3
  • 页码:321-330
  • 全文大小:832 KB
  • 参考文献:1. Adesemoye, AO, Torbert, HA, Kloepper, JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54: pp. 876-886 CrossRef
    2. Babalola, OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32: pp. 1559-1570 CrossRef
    3. Barbieri, P, Galli, E (1993) Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res Microbiol 144: pp. 69-75 CrossRef
    4. Bashan, Y, Holguin, G, De-Bashan, LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997鈥?003). Can J Microbiol 50: pp. 521-577 CrossRef
    5. Bottini, R, Cass谩n, F, Piccoli, P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65: pp. 497-503 CrossRef
    6. Brandl, MT, Lindow, SE (1997) Environmental signals modulate the expression of an indole-3-acetic acid biosynthetic gene in Erwinia herbicola. Mol Plant Microbe Interact 10: pp. 499-505 CrossRef
    7. Breton, YL, Mohapatra, NP, Haldenwang, WG (2006) In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl Environ Microbiol 72: pp. 327-333 CrossRef
    8. Cao, Y, Zhang, Z, Ling, N, Yuan, Y, Zheng, X, Shen, B, Shen, Q (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47: pp. 495-506 CrossRef
    9. Chaiharn, M, Lumyong, S (2011) Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr Microbiol 62: pp. 173-181 CrossRef
    10. Duca D, Lorv J, Patten CL, Rose D, Glick BR (2013) Indole-3-acetic acid in plant鈥搈icrobe interactions. Antonie Van Leeuwenhoek 1鈥?1
    11. Emmert, EA, Handelsman, J (1999) Biocontrol of plant disease: a gram-positive perspective. FEMS Microbiol Lett 171: pp. 1-9 CrossRef
    12. Farag, MA, Par茅, PW (2002) C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61: pp. 545-554 CrossRef
    13. Farag, MA, Ryu, CM, Sumner, LW, Par茅, PW (2006) GC鈥揗S SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67: pp. 2262-2268 CrossRef
    14. Farmer, EE (2001) Surface-to-air signals. Nature 411: pp. 854-856 CrossRef
    15. Frommel, MI, Nowak, J, Lazarovits, G (1991) Growth enhancement and developmental modifications of in vitro grown potato (solanumtuberosum spp. tuberosum) as affected by a nonfluorescent pseudomonas sp. Plant Physiol 96: pp. 928-936 CrossRef
    16. Idris, EE, Bochow, H, Ross, H, Borriss, R (2004) Use of Bacillus subtilis as biocontrol agent. VI. Phytohormone-like action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J Plant Dis Prot 111: pp. 583-597
    17. Idris, EE, Iglesias, DJ, Talon, M, Borriss, R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20: pp. 619-626 CrossRef
    18. Idriss, EE, Makarewicz, O, Farouk, A, Rosner, K, Greiner, R, Bochow, H, Richter, T, Borriss, R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148: pp. 2097-2109
    19. Kanehisa, M, Goto, S, Kawashima, S, Nakaya, A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30: pp. 42-46 CrossRef
    20. Kerovuo, J, Lauraeus, M, Nurminen, P, Kalkkinen, N, Apajalahti, J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64: pp. 2079-2085
    21. Kim, YO, Lee, JK, Kim, HK, Yu, JH, Oh, TK (1998) Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiol Lett 162: pp. 185-191 CrossRef
    22. Kloepper, JW, Lifshitz, R, Zablotowicz, RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7: pp. 39-44 CrossRef
    23. Koburger, T, Weibezahn, J, Bernhardt, J, Homuth, G, Hecker, M (2005) Genome-wide mRNA profiling in glucose starved Bacillus subtilis cells. Mol Genet Genomics 274: pp. 1-12 CrossRef
    24. Kochar, M, Upadhyay, A, Srivastava, S (2011) Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression. Res Microbiol 162: pp. 426-435 CrossRef
    25. Kuras, R, Saint-Marcoux, D, Wollman, FA, Vitry, CD (2007) A specific c-type cytochrome maturation system is required for oxygenic photosynthesis. Proc Natl Acad Sci 104: pp. 9906-9910 CrossRef
    26. Landy, M, Warren, GH, Rosenman, SB, Colio, LG (1948) Bacillomycin an antibiotic from Bacillus subtilis active against pathogenic Fungi. Exp Biol Med 67: pp. 539-541 CrossRef
    27. Liu, Y, Shi, J, Feng, Y, Yang, X, Li, X, Shen, Q (2013) Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biol Fertil Soils 49: pp. 447-464 CrossRef
    28. Madhaiyan, M, Poonguzhali, S, Ryu, J, Sa, T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224: pp. 268-278 CrossRef
    29. Makarewicz, O, Dubrac, S, Msadek, T, Borriss, R (2006) Dual role of the Pho鈭糚 approximately P response regulator: Bacillus amyloliquefaciens FZB45 phytase gene transcription is directed by positive and negative interactions with the phyC promoter. J Bacteriol 188: pp. 6953-65 CrossRef
    30. Meyer, JR, Linderman, RG (1986) Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18: pp. 191-196 CrossRef
    31. Nicholson, WL (2008) The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl Environ Microbiol 74: pp. 6832-6838 CrossRef
    32. Palacios, OA, Bashan, Y, De-Bashan, LE (2014) Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria鈥攁n overview. Biol Fertil Soils 50: pp. 415-432 CrossRef
    33. Patten, CL, Glick, BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68: pp. 3795-3801 CrossRef
    34. Penrose, DM, Glick, BR (2001) Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Can J Microbiol 47: pp. 368-372 CrossRef
    35. Ping, L, Boland, W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9: pp. 263-266 CrossRef
    36. Qiu, M, Li, S, Zhou, X, Cui, X, Vivanco, JM, Zhang, N, Shen, Q, Zhang, R (2014) De-coupling of root鈥搈icrobiome associations followed by antagonist inoculation improves rhizosphere soil suppressiveness. Biol Fertil Soils 50: pp. 217-224 CrossRef
    37. Qiu, M, Zhang, R, Xue, C, Zhang, S, Li, S, Zhang, N, Shen, Q (2012) Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biol Fertil Soils 48: pp. 807-816 CrossRef
    38. Renna, MC, Najimudin, N, Winik, LR, Zahler, SA (1993) Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol 175: pp. 3863-3875
    39. Richardson, AE, Hadobas, PA, Hayes, JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25: pp. 641-649 CrossRef
    40. Ryu, CM, Farag, MA, Hu, CH, Reddy, MS, Kloepper, JW, Pw, P (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134: pp. 1017-1026 CrossRef
    41. Ryu, CM, Farag, MA, Hu, CH, Reddy, MS, Kloepper, JW, Wei, HX, Par茅, PW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100: pp. 4927-4932 CrossRef
    42. Santana, M, Kunst, F, Hullo, MF, Rapoport, G, Danchin, A, Glaser, P (1992) Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3-600 quinol oxidase. J Biol Chem 267: pp. 10225-10231
    43. Shimizu, M (1992) Purification and characterization of phytase from Bacillus subtilis (natto) N-77. Biosci Biotech Bioch 56: pp. 1266-1269 CrossRef
    44. Spaepen, S, Vanderleyden, J, Remans, R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31: pp. 425-448 CrossRef
    45. Teale, WD, Paponov, IA, Palme, K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7: pp. 847-859 CrossRef
    46. Wang, B, Yuan, J, Zhang, J, Shen, Z, Zhang, M, Li, R, Ruan, Y, Shen, Q (2013) Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biol Fertil Soils 49: pp. 435-446 CrossRef
    47. Weng, J, Wang, Y, Li, J, Shen, Q, Zhang, R (2013) Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption. Appl Microbiol Biotechnol 97: pp. 8823-8830 CrossRef
    48. Woodward, AW, Bartel, B (2005) Auxin: regulation, action, and interaction. Ann Bot 95: pp. 707-735 CrossRef
    49. Xu, Z, Shao, J, Li, B, Yan, X, Shen, Q, Zhang, R (2013) Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl Environ Microbiol 79: pp. 808-815 CrossRef
    50. Zhang, H, Kim, MS, Krishnamachari, V, Payton, P, Sun, Y, Grimson, M, Farag, MA, Ryu, CM, Allen, R, Melo, IS, Par茅, PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226: pp. 839-851 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Life Sciences
    Agriculture
    Soil Science and Conservation
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0789
文摘
Bacillus amyloliquefaciens SQR9, isolated from the rhizosphere of cucumber, can control Fusarium wilt of cucumber and directly stimulate plant growth. To evaluate its potential agricultural use, the plant growth promotion of B. amyloliquefaciens SQR9 was evaluated, and the relative mechanisms, especially the production of the phytohormone indole-3-acetic acid (IAA), were investigated. The related plant-growth-promoting factors were genetically and chemically analyzed, and a mutant library was constructed for selecting strains with different IAA production. B. amyloliquefaciens SQR9 showed a growth-promoting activity in greenhouse experiments. Plant-growth-promoting factors like extracellular phytase, volatile components including acetoin, 2,3-butanediol, and phytohormone IAA were detected in B. amyloliquefaciens SQR9 cultures grown under laboratory conditions. Three IAA production mutant strains showed variation in plant-growth-promoting effect. IAA production in B. amyloliquefaciens SQR9 was related to its plant-growth-promoting effect, but IAA alone could not account for the overall observed plant-growth-promoting effect. The promoted plant growth by the rhizospheric strain B. amyloliquefaciens SQR9 can be attributed to multiple factors, including production of phytohormones, volatile compounds, and extracellular enzymes. Therefore, the strain B. amyloliquefaciens SQR9 may be used as a plant-growth-promoting agent to increase crop yield.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700