用户名: 密码: 验证码:
Structural changes in Sr9In(PO4)7 during antiferroelectric phase transition
详细信息    查看全文
  • 作者:D. V. Deyneko ; V. A. Morozov ; S. Yu. Stefanovich ; A. A. Belik…
  • 关键词:phosphates ; strontium ; indium ; X ; ray powder diffraction ; electron microscopy ; antiferroelectric phase transition
  • 刊名:Inorganic Materials
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:52
  • 期:2
  • 页码:176-185
  • 全文大小:4,188 KB
  • 参考文献:1.Kittel, C., Theory of antiferroelectric crystals, Phys. Rev., 1951, vol. 82, pp. 729–732.CrossRef
    2.Sawaguchi, E., Maniwa, H., and Hoshino, S., Antiferroelectric structure of lead zirconate, Phys. Rev., 1951, vol. 83, p. 1078.CrossRef
    3.Shirane, G., Sawaguchi, E., and Takagi, Y., Dielectric properties of lead zirconate, Phys. Rev., 1951, vol. 84, pp. 476–481.CrossRef
    4.Jankowska-Sumara, I., Antiferroelectric phase transitions in single crystals PbZrO3:Sn revisited, Phase Transitions, 2014, vol. 87, pp. 685–728.CrossRef
    5.Sa, T., Qin, N., Yang, G., and Bao, D., W-doping induced antiferroelectric to ferroelectric phase transition in PbZrO3 thin films prepared by chemical solution deposition, Appl. Phys. Lett., 2013, vol. 102, paper 172 906.
    6.Goian, V., Kamba, S., Greicius, S., Nuzhnyy, D., Karimi, S., and Reaney, I.M., Terahertz and infrared studies of antiferroelectric phase transition in multiferroic Bi0.85Nd0.15FeO3, J. Appl. Phys., 2011, vol. 110, paper 074 112.
    7.Xue, F., Liang, L., Gu, Y., Takeuchi, I., Kalinin, S.V., and Chen, L.-Q., Compositionand pressure-induced ferroelectric to antiferroelectric phase transitions in Sm-doped BiFeO3 system, Appl. Phys. Lett., 2015, vol. 106, paper 012 903.
    8.Ranjan, R., Pandey, D., and Lalla, N.P., Novel features of Sr1–isTypeItalic ">x CaxTiO3 phase diagram: evidence for competing antiferroelectric and ferroelectric interactions, Phys. Rev. Lett., 2000, vol. 84, no. 16, pp. 3726–3729.CrossRef
    9.Mishra, S.K., Ranjan, R., Pandey, D., and Kennedy, B.J., Powder neutron diffraction study of the antiferroelectric phase transition in Sr0.75Ca0.25TiO3, J. Appl. Phys., 2002, vol. 91, no. 7, pp. 4447–4452.CrossRef
    10.Anwar, S. and Lalla, N.P., Occurrence of a new superlattice phase across the antiferroelectric phase transition in Sr1–isTypeItalic ">x CaxTiO3 (x = 0.30 and 0.40), J. Phys.: Condens. Matter, 2008, vol. 20, paper 325 231.
    11.Shirane, G. and Pepinsky, R., Phase transitions in antiferroelectric PbHfO3, Phys. Rev., 1953, vol. 91, pp. 812–815.CrossRef
    12.Samara, G.A., Pressure and temperature dependence of the dielectric properties and phase transitions of the antiferroelectric perovskites: PbZrO3 and PbHfO3, Phys. Rev. B: Solid State, 1970, vol. 1, pp. 3777–3786.CrossRef
    13.Maczka, M., Kim, T.H., Gagor, A., JankowskaSumara, I., Majchrowski, A., and Kojima, S., Brillouin scattering, DSC, dielectric and X-ray diffraction studies of phase transitions in antiferroelectric PbHfO3:Sn, J. Alloys Compd., 2015, vol. 622, pp. 935–941.CrossRef
    14.Wood, E.A., Polymorphism in potassium niobate, sodium niobate, and other ABO3 compounds, Acta Crystallogr., 1951, vol. 4, pp. 353–362.CrossRef
    15.Shirane, G., Newnham, R., and Pepinsky, R., Dielectric properties and phase transitions of NaNbO3 and (Na,K)NbO3, Phys. Rev., 1954, vol. 96, pp. 581–588.CrossRef
    16.Megaw, D., The seven phases of sodium niobate, Ferroelectrics, 1974, vol. 7, pp. 87–89.CrossRef
    17.Francobe, M.H. and Lewis, G., Structural and electrical properties of silver niobate and silver tantalate, Acta Crystallogr., 1958, vol. 11, pp. 175–178.CrossRef
    18.Watanabe, S. and Koyama, Y., Commensuration of the antiferroelectric incommensurate phase in Pb(Co1/2W1/2)O3, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 65, paper 064 108.
    19.Belov, D.A., Shlyakhtina, A.V., Stefanovich, S.Yu., Shchegolikhin, A.N., Knotko, A.V., Karyagina, O.K., and Shcherbakova, L.G., Antiferroelectric phase transition in pyrochlore-like (Dy1–isTypeItalic ">x Cax)2Ti2O7–d (x = 0, 0.1) high temperature conductors, Solid State Ionics, 2011, vol. 192, pp. 188–194.CrossRef
    20.Samara, G.A., Vanishing of ferroelectric and antiferroelectric states in KH2PO2-type crystals at high pressure, Phys. Rev. Lett., 1971, vol. 27, pp. 103–106.CrossRef
    21.Stasyuk, I.V., Levitskii, R.R., and Moina, A.P., External pressure influence on ferroelectrics and antiferroelectrics of the KH2PO4 family: a unified model, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, vol. 59, no. 13, pp. 8530–8540.CrossRef
    22.Fukami, T., X-ray study of crystal structure of Nd4D2PO4 in the antiferroelectric phase, J. Phys. Soc. Jpn., 1988, vol. 57, pp. 1287–1290.CrossRef
    23.Fukami, T., Refinement of the crystal structure of NH4H2AsO4 above and below antiferroelectric phasetransition temperature, J. Phys. Soc. Jpn., 1989, vol. 58, pp. 3429–3430.CrossRef
    24.Hayashi, Y., Kasahara, M., Tokunaga, M., and Tatsuzaki, I., Raman scattering study on the phase transition of NH4H2AsO4, J. Phys. Soc. Jpn., 1988, vol. 57, pp. 1321–1326.CrossRef
    25.Kim, S.-H., Lee, K.W., Han, J.H., and Lee, C.E., 1H NMR spin–spin relaxation in TlH2PO4 undergoing separated antiferroelectric and ferroelastic phase transitions, Solid State Commun., 2007, vol. 144, pp. 1–4.CrossRef
    26.Tsai, S.-F. and Yu, J.-T., Investigation of the ferroelectric to the antiferroelectric transition in LiNH4SO4 by the ESR of, J. Phys. Soc. Jpn., 1988, vol. 57, pp. 2540–2549.CrossRef
    27.Ravez, J., Ferroelectricity in solid state chemistry, C. R. Acad. Sci., Ser. IIc: Chim., 2000, vol. 3, pp. 267–283.
    28.Yashima, M., Sakai, A., Kamiyama, T., and Hoshikawa, A., Crystal structure analysis of tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction, J. Solid State Chem., 2003, vol. 175, pp. 272–277.CrossRef
    29.Glass, A.M., Abrahams, S.C., Ballman, A.A., and Loiacono, G., Calcium orthovanadate, Ca3(VO4)2—a new high-temperature ferroelectric, Ferroelectrics, 1978, vol. 17, pp. 579–582.CrossRef
    30.Lazoryak, B.I., Baryshnikova, O.V., Stefanovich, S.Yu., Malakho, A.P., Morozov, V.A., Belik, A.A., Leonidov, I.A., Leonidova, O.N., and Van Tendeloo, G., Ferroelectric and ionic-conductive properties of nonlinear-optical vanadate, Ca9Bi(VO4)7, Chem. Mater., 2003, vol. 15, pp. 3003–3010.CrossRef
    31.Lazoryak, B.I., Belik, A.A., Stefanovich, S.Yu., Morozov, V.A., Malakho, A.P., Baryshnikova, O.V., Leonidov, I.A., and Leonidova, O.N., Ferroelectric–ionic conductor phase transitions in optical nonlinear Ca9R(VO4)7 vanadates, Dokl. Phys. Chem., 2002, vol. 384, nos. 4–6, pp. 144–148.CrossRef
    32.Lazoryak, B.I., Morozov, V.A., Belik, A.A., Stefanovich, S.Yu., Grebenev, V.V., Leonidov, I.A., Mitberg, E.B., Davydov, S.A., Lebedev, O.I., and Van Tendeloo, G., Ferroelectric phase transition in the whitlockite-type Ca9Fe(PO4)7; crystal structure of the paraelectric phase at 923 K, Solid State Sci., 2004, vol. 6, no. 2, pp. 185–195.CrossRef
    33.Morozov, V.A., Belik, A.A., Stefanovich, S.Yu., Grebenev, V.V., Lebedev, O.I., Van Tendeloo, G., and Lazoryak, B.I., High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7, J. Solid State Chem., 2002, vol. 165, no. 2, pp. 278–288.CrossRef
    34.Belik, A.A., Takano, M., Boguslavsky, M.V., Stefanovich, S.Yu., and Lazoryak, B.I., New noncentrosymmetric vanadates Sr9R(VO4)7 (R = Tm, Yb, and Lu): synthesis, structure analysis, and characterization, Chem. Mater., 2005, vol. 17, no. 1, pp. 122–129.CrossRef
    35.Belik, A.A., Azuma, M., and Takano, M., Phase transitions in Sr-containing phosphates and vanadates with ß-Ca3(PO4)2-related structures, Solid State Ionics, 2004, vol. 172, nos. 1–4, pp. 533–537.CrossRef
    36.Stefanovich, S.Yu., Belik, A.A., Azuma, M., Takano, M., Baryshnikova, O.V., Morozov, V.A., Lazoryak, B.I., Lebedev, O.I., and Van Tendeloo, G., Antiferroelectric phase transition in Sr9In(PO4)7, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 70, no. 17, paper 172103.
    37.Teterskii, A.V., Stefanovich, S.Yu., Lazoryak, B.I., and Rusakov, D.A., Whitlockite solid solutions Ca9 MR(PO4)7 (x = 1, 1.5; M= Mg, Zn, Cd; R = Ln, Y) with antiferroelectric properties, Russ. J. Inorg. Chem., 2007, vol. 52, no. 3, pp. 308–314.CrossRef
    38.Belik, A.A., Izumi, F., Ikeda, T., Okui, M., Malakho, A.P., Morozov, V.A., and Lazoryak, B.I., Whitlockite-related phosphates Sr9A(PO4)7 (A = Sc, Cr, Fe, Ga, and In): structure refinement of Sr9In(PO4)7 with synchrotron X-ray powder diffraction data, J. Solid State Chem., 2002, vol. 168, no. 1, pp. 237–244.CrossRef
    39.Belik, A.A., Izumi, F., Ikeda, T., Morozov, V.A., Dilanian, R.A., Torii, S., Kopnin, E.M., Lebedev, O.I., Van Tendeloo, G., and Lazoryak, B.I., Positional and orientational disorder in a solid solution of Sr9+x Ni1.5–isTypeItalic ">x (PO4)7 (x = 0.3), Chem. Mater., 2002, vol. 14, no. 10, pp. 4464–4472.CrossRef
    40.Izumi, F. and Ikeda, T., A Rietveld-analysis program RIETAN-98 and its applications to zeolites, Mater. Sci. Forum, 2000, vols. 321–324, pp. 198–205.CrossRef
    41.Nishibori, E., Takata, M., Kato, K., Sakata, M., Kubota, Y., Aoyagi, S., Kuroiwa, Y., Yamakata, M., and Ikeda, N., The large Debye–Scherrer camera installed at SPring-8 BL02B2 for charge density studies, Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, vols. 467–468, pp. 1045–1048.
    42.Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials, Oxford: Clarendon, 1977.
    43.Malakho, A.P., Vorontsova, O.P., Morozov, V.A., Stefanovich, S.Yu., and Lazoryak, B.I., Ferroelectric and nonlinear optical properties of Ca9–isTypeItalic ">xZnxBi(VO4)7 vanadates, Russ. J. Inorg. Chem., 2004, vol. 49, no. 2, pp. 125–133.
    44.Vorontsova, O.L., Malakho, A.P., Morozov, V.A., Stefanovich, S.Yu., and Lazoryak, B.I., Ferroelectric and nonlinear optical properties of Ca9–isTypeItalic ">x CdxBi(VO4)7 vanadates, Russ. J. Inorg. Chem., 2004, vol. 49, no. 2, pp. 1793–1802.
  • 作者单位:D. V. Deyneko (1)
    V. A. Morozov (1) (2)
    S. Yu. Stefanovich (1)
    A. A. Belik (3)
    B. I. Lazoryak (1)
    O. I. Lebedev (4)

    1. Department of Chemistry, Moscow State University, Leninsky Gory, Moscow, 119991, Russia
    2. EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
    3. International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
    4. CRISMAT ENSICAEN, Caen, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Inorganic Chemistry
    Industrial Chemistry and Chemical Engineering
    Materials Science
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3172
文摘
Structural changes in Sr9In(PO4)7 during the antiferroelectric (AFE) phase transition are studied by X-ray powder diffraction, electron microscopy, second-harmonic-generation, and dielectric measurements. Sr9In(PO4)7 complements a group of Ca3(VO4)2-type ferroelectric (FE) phosphates and vanadates and is the first example of an AFE material in this family. Antiparallel shifts of Sr atoms from their average positions and ordering of the P1O4 tetrahedra form two contributions in the structural mechanism of the AFE phase transition: a displacive contribution and an order-disorder constituent, respectively. The displacive and order-disorder type of structural changes may account for the obtained value of the Curie–Weiss constant (C ~ 104 K) which is in between the value usually observed for pure displacive (C ~ 105 K) and that for orderdisorder phase transitions (C ~ 103 K). The structural mechanism of the AFE phase transition in Sr9In(PO4)7 is very similar to that of the FE phase transition in Ca9R(PO4)7 and Ca9R(VO4)7. Both displacive and orderdisorder contributions are responsible for the physical properties of the Ca3(VO4)2-type materials. Keywords phosphates strontium indium X-ray powder diffraction electron microscopy antiferroelectric phase transition

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700