用户名: 密码: 验证码:
Construction of cytogenetic map of Gossypium herbaceum chromosome 1 and its integration with genetic maps
详细信息    查看全文
  • 作者:Xinglei Cui (1)
    Fang Liu (1)
    Yuling Liu (1)
    Zhongli Zhou (1)
    Yanyan Zhao (1)
    Chunying Wang (1)
    Xingxing Wang (1)
    Xiaoyan Cai (1)
    Yuhong Wang (1)
    Fei Meng (1)
    Renhai Peng (1) (2)
    Kunbo Wang (1)

    1. State Key Laboratory of Cotton Biology (China)/Institute of Cotton Research of Chinese Academy of Agricultural Science
    ; Anyang ; Henan ; 455000 ; China
    2. Anyang Institute of Technology
    ; Anyang ; Henan ; 455000 ; China
  • 关键词:Cotton ; BAC ; FISH ; Cytogenetic map
  • 刊名:Molecular Cytogenetics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 全文大小:3,434 KB
  • 参考文献:1. Jiang CX, Wright RJ, El-Zik KM, Paterson AH. Polyploid formation created unique avenues for response to selection in / Gossypium (cotton). Proc Natl Acad Sci U S A. 1998;95:4419鈥?4. CrossRef
    2. Masterson J. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science. 1994;264:421鈥?. CrossRef
    3. Percival AE, Wendel JF, Stewart JM. Taxonomy and germplasm resources. In: Smith CW, Cothren JT, editors. Cotton: origin, history, technology, and production. New York: Wiley Press; 1999. p. 33鈥?3.
    4. Wendel JF, Brubaker CL, Seelanan T. The origin and evolution of / Gossypium. In: Stewart J MD, Oosterhuis D, Heitholt JJ, Mauney JR, editors. Physiology of cotton. Netherlands: Springer Press; 2010. p. 1鈥?8. CrossRef
    5. Grover CE, Kim HR, Wing RA, Paterson AH, Wendel JF. Incongruent patterns of local and global genome size evolution in cotton. Genome Res. 2004;14:1474鈥?2. CrossRef
    6. Grover CE, Yu Y, Wing RA, Paterson AH, Wendel JF. A Phylogenetic analysis of indel dynamics in the cotton genus. Mol Biol Evol. 2008;25:1415鈥?8. CrossRef
    7. Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in / Gossypium. Genome Res. 2006;16:1252鈥?1. CrossRef
    8. Cronn RC, Small RL, Haselkorn T, Wendel JF. Rapid diversification of the cotton genus ( / Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot. 2002;89:707鈥?5. CrossRef
    9. Wendel JF. New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci U S A. 1989;86:4132鈥?. CrossRef
    10. Wendel JF, Schnabel A, Seelanan T. An unusual ribosomal DNA sequence from / Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol Phylogenet Evol. 1995;4:298鈥?13. CrossRef
    11. Wang K, Guo WZ, Yang ZJ, Hu Y, Zhang WP, Zhou BL, et al. Structure and size variations between 12A and 12D homoeologous chromosomes based on high-resolution cytogenetic map in allotetraploid cotton. Chromosoma. 2010;119:255鈥?6. CrossRef
    12. Sun JY, Zhang ZH, Zong X, Huang SW, LI ZY, Han YH. A high-resolution cucumber cytogenetic map integrated with the genome assembly. BMC Genomics. 2013;14:461鈥?. CrossRef
    13. Kao FI, Cheng YY, Chow TY, Chen HH, Liu SM, Cheng CH, et al. An integrated map of / Oryza sativa L. chromosome 5. Theor Appl Genet. 2006;112:891鈥?02. CrossRef
    14. Cheng ZK, Presting GG, Buell CR, Wing RA, Jiang J. High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics. 2001;157:1749鈥?7.
    15. Desel C, Jung C, Cai DG, Kleine M, Schmidt T. High-resolution mapping of YACs and the single-copy gene Hs1pro-1 on / Beta vulgaris chromosome by multi-colour fluorescence / in situ hybridization. Plant Mol Biol. 2001;45:113鈥?2. CrossRef
    16. Zhu L, Smith S, de Lange T, Seldin MF. Chromosomal mapping of the tankyrase gene in human and mouse. Genomics. 1999;57:320鈥?. CrossRef
    17. Tang X, De Boer JM, Van Eck HJ, Bachem C, Visser RG, De Jong H. Assignment of genetic linkage maps to diploid / Solanum tuberosum pachytene chromosomes by BAC-FISH technology. Chromosome Res. 2009;17:899鈥?15. CrossRef
    18. Fransz PF, Alonso-Blanco C, Liharska TB, Peeters Anton JM, Zabel P, De Jong JH. High resolution physical mapping in / Arabidopsis thaliana and tomato by fluorescence / in situ hybridization to extended DNA fibres. Plant J. 1996;9:421鈥?0. CrossRef
    19. De Jong JH, Fransz PF, Zabel P. High resolution FISH in plants-techniques and applications. Trends Plant Sci. 1999;4:258鈥?3. CrossRef
    20. Jackson SA, Cheng Z, Wang ML, Goodman HM, Jiang J. Comparative fluorescence / in situ hybridization mapping of a 431-kb / Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the / Brassica rapa genome. Genetics. 2000;156:833鈥?.
    21. Amarillo FI, Bass HW. A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization map of maize (Zea mays L.) pachytene chromosome 9, evidence for regions of genome hyperexpansion. Genetics. 2007;177:1509鈥?6. CrossRef
    22. Figueroa DM, Bass HW. Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation. Chromosome Res. 2012;20:363鈥?0. CrossRef
    23. Howell EC, Armstrong SJ, Barker GC, Jones GH, King GJ, Ryder CD, et al. Cytogenetic organization of the major duplication on / Brassica oleracea chromosome O6 revealed through fluorescence / in situ hybridization with / Arabidopsis and / Brassica BAC probes. Genome. 2005;48:1093鈥?03. CrossRef
    24. Xiong Z, Kim JS, Pires JC. Integration of genetic, cytogenetic, and cytogenetic maps for / Brassica rapa chromosome A7. Cytogenet Genome Res. 2010;129:190鈥?. CrossRef
    25. Chang SB, Anderson LK, Sherman JD, Royer SM, Stack SM. Predicting and testing cytogenetic locations of genetically mapped loci on tomato pachytene chromosome 1. Genetics. 2007;176:2131鈥?. CrossRef
    26. Koo DH, Jo SH, Bang JW, Park HM, Lee S, Choi D. Integration of cytogenetic and genetic linkage maps unveils the cytogenetic architecture of tomato chromosome 2. Genetics. 2008;179:1211鈥?0. CrossRef
    27. Szinay D, Chang SB, Khrustaleva L, Peters S, Schijlen E, Bai Y, et al. High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J. 2008;56:627鈥?7. CrossRef
    28. Han YH, Zhang ZH, Huang SW, Jin WW. An integrated molecular cytogenetic map of / Cucumis sativus L. chromosome 2. BMC Genet. 2011;12:18鈥?4. CrossRef
    29. Walling JG, Shoemaker R, Young N, Mudge J, Jackson S. Chromosome level homeology in paleopolyploid soybean ( / Glycine max) revealed through integration of genetic and chromosome maps. Genetics. 2006;172:1893鈥?00. CrossRef
    30. Wai CM, Moore PH, Paull RE, Ming R, Yu Q. An integrated cytogenetic and physical map reveals unevenly distributed recombination spots along the papaya sex chromosomes. Chromosome Res. 2012;20:753鈥?7. CrossRef
    31. Iovene M, Wielgus SM, Simon PW, Buell CR, Jiang JM. Chromatin structure and cytogenetic mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics. 2008;180:1307鈥?7. CrossRef
    32. Tang X, Szinay D, Lang C, Ramanna MS, van der Vossen EA, Datema E, et al. Crossspecies BAC-FISH painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics. 2008;180:1319鈥?8. CrossRef
    33. Pedrosa-Harand A, Kami J, Gepts P, Geffroy V, Schweizer D. Cytogenetic mapping of common bean chromosomes reveals a less compartmentalized small-genome plant species. Chromosome Res. 2009;17:405鈥?7. CrossRef
    34. Fons锚ca A, Ferreira J, Dos Santos TR, Mosiolek M, Bellucci E, Kami J, et al. Cytogenetic map of common bean ( / Phaseolus vulgaris L.). Chromosome Res. 2010;18:487鈥?02. CrossRef
    35. Kim JS, Islam-Faridi MN, Klein PE, Stelly DM, Price HJ, Klein RR, et al. Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics. 2005;171:1963鈥?6. CrossRef
    36. Wang K, Yang ZJ, Shu CS, Hu J, Lin QY, Zhang WP, et al. Higher axial-resolution and sensitivity pachytene fluorescence / in situ hybridization protocol in tetroploid cotton. Chromosome Res. 2009;17:1041鈥?0. CrossRef
    37. Peng RH, Zhang T, Liu F, Ling J, Wang CY, Li SH, et al. Preparations of meiotic pachytene chromosomes and extended DNA fibers from cotton suitable for fluorescence / In Situ hybridization. PLoS ONE. 2012;7:1371鈥?. CrossRef
    38. Gan YM, Chen D, Liu F, Wang CY, Li SH, Zhang XD, et al. Individual chromosome assignment and chromosomal collinearity in / Gossypium thurberi, / G. trilobum and D subgenome of / G. barbadense revealed by BAC-FISH. Genes Genet Syst. 2011;86:165鈥?4. CrossRef
    39. Gan YM, Liu F, Peng RH, Wang CY, Li SH, Zhang XD, et al. Individual chromosome identification, chromosomal collinearity and genetic-physical integrated map in / Gossypium darwinii and four D genome cotton species revealed by BAC-FISH. Genes Genet Syst. 2012;87:233鈥?1.
    40. Wang K, Guo WZ, Zhang TZ. Detection and mapping of homologous and homoeologous segments in homoeologous groups of allotetraploid cotton by BAC-FISH. BMC Genomics. 2007;8:178鈥?6. CrossRef
    41. Wang K, Guo WZ, Zhang TZ. Development of one set of chromosome-specific microsatellite-containing BACs and their physical mapping in Gossypium hirsutum L. Theor Appl Genet. 2007;115:675鈥?2. CrossRef
    42. Cheng H, Gan YM, Liu F, Cai XY, Wang CY, Wang YH, et al. Individual chromosome identification in G. barbadense cv. Pima 90鈥?3, G. herbaceum cv. Hongxing, and G. herbaceum raced africanum. Cotton Sci (In Chinese). 2013;25:227鈥?3.
    43. Han ZG, Wang CB, Song XL, Guo WZ, Gou JY, Li CH, et al. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet. 2006;112:430鈥?. CrossRef
    44. Ma XX, Zhou BL, Lv YH, Guo WZ, Zhang TZ. Simple sequence repeat genetic linkage maps of A-genome diploid cotton ( / Gossypium arboreum). J Integr Plant Biol. 2008;50:491鈥?02. CrossRef
    45. Zhao L, Lv YD, Cai CP, Tong XC, Chen XD, Zhang W, et al. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics. 2012;13:539鈥?5. CrossRef
    46. Yu JZ, Kohel RJ, Fang DD, Cho J, Van Deynze A, Ulloa M, et al. A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome. G3 (Bethesda). 2012;2:43鈥?8. CrossRef
    47. Zhang YX, Lin ZX, Xia QZ, Zhang MJ, Zhang XL. Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between / Gossypium hirsutum and / G. barbadense. Genome. 2008;51:534鈥?6. CrossRef
    48. Qin Q, Liu F, Gan YM, Wang CY, Wang YH, Cai XY, et al. Screening and positioning of three chromosome-specific BAC clones in / Gossypium raimondii. Cotton Sci (In Chinese). 2013;25:323鈥?.
    49. Gonz谩lez J, Nefedov M, Bosdet I, Casals F, Calvete O, Delprat A, et al. A BAC-based physical map of the / Drosophila buzzatii genome. Genome Res. 2005;15:885鈥?2. CrossRef
    50. Li FG, Fan GY, Wang KB, Sun FM, Yuan YL, Song GL, et al. Genome sequence of the cultivated cotton / Gossypium arboretum. Nat Genet. 2014;46:567鈥?2. CrossRef
    51. Wang CJ, Harper L, Cande WZ. High-resolution single-copy gene fluorescence / in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell. 2006;18:529鈥?4. CrossRef
    52. Gill KS, Gill BS, Endo TR, Taylor T. Identification and high density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics. 1996;144:1883鈥?1.
    53. Kunzel G, Korzun L, Meister A. Cytologically integrated cytogenetic restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics. 2000;154:397鈥?12.
    54. Islam-Faridi MN, Childs KL, Klein PE, Hodnett G, Menz MA, Klein RR, et al. A molecular cytogenetic map of sorghum chromosome 1 Fluorescence / in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics. 2002;161:345鈥?3.
    55. Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM. Molecular cytogenetic maps of Sorghum linkage groups 2 and 8. Genetics. 2005;169:955鈥?5. CrossRef
    56. Wang ZN, Zhang D, Wang XY, Tan X, Guo H, Paterson AH. A whole-genome DNA marker map for cotton based on the D-genome sequence of / Gossypium raimondii L. G3 (Bethesda). 2013;3:1759鈥?7. CrossRef
    57. Xu ZY, Kohel RJ, Song GL, Cho JM, Yu J, Yu SX, et al. An integrated genetic and physical map of homoeologous chromosomes 12 and 26 in Upland cotton ( / G. hirsutum L.). BMC Genomics. 2008;9:108鈥?8. CrossRef
    58. Cronn RC, Small RL, Wendel JF. Duplicated genes evolve independently after Polyploid formation in cotton. Proc Natl Acad Sci U S A. 1999;96:14406鈥?1. CrossRef
    59. Grover CE, Kim HR, Wing RA, Paterson AH, Wendel JF. Microcolinearity and genome evolution in the / AdhA region of diploid and polyploid cotton ( / Gossypium). Plant J. 2007;50:995鈥?006. CrossRef
    60. Sambrook J, Russell DW. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 2002.
    61. Wang CY, Wang KB, Song GL, Li MX, Bie S, Li SH, et al. Protocol of cotton FISH of somatic chromosomes with rDNA as probes. Cotton Sci (In Chinese). 2001;13:75鈥?.
  • 刊物主题:Cytogenetics; Molecular Medicine;
  • 出版者:BioMed Central
  • ISSN:1755-8166
文摘
Background Cytogenetic map can provide not only information of the genome structure, but also can build a solid foundation for genetic research. With the developments of molecular and cytogenetic studies in cotton (Gossypium), the construction of cytogenetic map is becoming more and more imperative. Results A cytogenetic map of chromosome 1 (A101) of Gossypium herbaceum (A1) which includes 10 bacterial artificial chromosome (BAC) clones was constructed by using fluorescent in situ hybridization (FISH). Meanwhile, comparison and analysis were made for the cytogenetic map of chromosome 1 (A101) of G. herbaceum with four genetic linkage maps of chromosome 1 (Ah01) of G. hirsutum ((AD)1) and one genetic linkage map of chromosome 1 of (A101) G. arboreum (A2). The 10 BAC clones were also used to be localized on G. raimondii (D5) chromosome 1 (D501), and 2 of them showed clear unique hybridized signals. Furthermore, these 2 BAC clones were also shown localized on chromosome 1 of both A sub-genome and D sub-genome of G. hirsutum. Conclusion The comparison of the cytogenetic map with genetic linkage maps showed that most of the identified marker-tagged BAC clones appearing same orders in different maps except three markers showing different positions, which might indicate chromosomal segmental rearrangements. The positions of the 2 BAC clones which were localized on Ah01 and Dh01 chromosomes were almost the same as that on A101 and D501 chromosomes. The corresponding anchored SSR markers of these 2 BAC clones were firstly found to be localized on chromosome D501 (Dh01) as they were not seen mapped like this in any genetic map reported.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700