用户名: 密码: 验证码:
Facilely prepared polypyrrole-graphene oxide-sodium dodecylbenzene sulfonate nanocomposites by in situ emulsion polymerization for high-performance supercapacitor electrodes
详细信息    查看全文
  • 作者:Yunqiang Zhang (1)
    Mei Li (1) (2) (3)
    Lanlan Yang (1)
    Kaihua Yi (1)
    Zhen Li (1)
    Jinshui Yao (1) (2) (3)
  • 关键词:PPyGO ; SDBS nanocomposites ; Supercapacitors ; Specific capacitance ; Rate capacity ; Cycling stability
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:18
  • 期:8
  • 页码:2139-2147
  • 全文大小:1,677 KB
  • 参考文献:1. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651-52 CrossRef
    2. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245-269 CrossRef
    3. Fuertes AB, Lota G, Centeno TA, Frackowiak E (2005) Templated mesoporous carbons for supercapacitor application. Electrochim Acta 50:2799-805 CrossRef
    4. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845-54 CrossRef
    5. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37-0 CrossRef
    6. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520-531 CrossRef
    7. Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917-18 CrossRef
    8. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350-375 CrossRef
    9. Dékány I, Krüger-Grasser R, Weiss A (1998) Selective liquid sorption properties of hydrophobized graphite oxide nanostructures. Colloid Polym Sci 276:570-76 CrossRef
    10. Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050-055 CrossRef
    11. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18:1518-525 CrossRef
    12. Zhuang XD, Chen Y, Liu G, Li PP, Zhu CX, Kang ET, Noeh KG, Zhang B, Zhu JH, Li YX (2010) Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect. Adv Mater 22:1731-735 CrossRef
    13. Liu P, Gong K, Xiao P, Xiao M (2000) Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide nanocomposite. J Mater Chem 10:933-35 CrossRef
    14. Zhang X, Yang W, Ma Y (2009) Synthesis of polypyrrole-intercalated layered manganese oxide nanocomposite by a delamination/reassembling method and its electrochemical capacitance performance. Electrochem Solid-State Lett 12:A95–A98 CrossRef
    15. Zhang LL, Zhao S, Tian XN, Zhao XS (2010) Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes. Langmuir 26:17624-7628 CrossRef
    16. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392-401 CrossRef
    17. Feng H, Wang B, Tan L, Chen N, Wang N, Chen B (2014) Polypyrrole/hxadecylpyridinium chloride-modified graphite oxide composites: fabrication, characterization, and application in supercapacitors. J Power Sources 246:621-28 CrossRef
    18. Konwer S, Boruah R, Dolui SK (2011) Studies on conducting polypyrrole/graphene oxide composites as supercapacitor electrode. J Electron Mater 40:2248-255 CrossRef
    19. Gu Z, Zhang L, Li C (2009) Preparation of highly conductive polypyrrole/graphite oxide composites via in situ polymerization. J Macromol Sci B 48:1093-102 CrossRef
    20. Gu Z, Li C, Wang G, Zhang L, Li X, Wang W, Jin S (2010) Synthesis and characterization of polypyrrole/graphite oxide composite by in situ emulsion polymerization. J Polym Sci B Polym Phys 48:1329-335 CrossRef
    21. Li Y, Wu Y (2009) Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J Am Chem Soc 131:5851-857 CrossRef
    22. Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J (2010) Graphene oxide sheets at interfaces. J Am Chem Soc 132:8180-186 CrossRef
    23. Chang H, Wang G, Yang A, Tao X, Liu X, Shen Y, Zheng Z (2010) A transparent, flexible, low-temperature, and solution-processible graphene composite electrode. Adv Funct Mater 20:2893-902 CrossRef
    24. Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429-437 CrossRef
    25. Zhu C, Guo S, Fang Y, Han L, Wang E, Dong S (2011) One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids. Nano Res 4:648-57 CrossRef
    26. Zhu C, Guo S, Wang P, Xing L, Fang Y, Zhai Y, Dong S (2010) One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets. Chem Commun 46:7148-150 CrossRef
    27. Bose S, Kim NH, Kuila T, Lau KT, Lee JH (2011) Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology 22:295202-95210 CrossRef
    28. Bose S, Kuila T, Uddin ME, Kim NH, Lau AKT, Lee JH (2010) In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 51:5921-928 CrossRef
    29. Bora C, Dolui SK (2012) Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer 53:923-32 CrossRef
    30. Li L, Xia K, Li L, Shang S, Guo Q, Yan G (2012) Fabrication and characterization of free-standing polypyrrole/graphene oxide nanocomposite paper. J Nanoparticle Res 14:1-
    31. Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 196:5990-996 CrossRef
    32. Zhu C, Zhai J, Wen D, Dong S (2012) Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem 22:6300-306 CrossRef
    33. Pandey GP, Hashmi SA, Kumar Y (2010) Multiwalled carbon nanotube electrodes for electrical double layer capacitors with ionic liquid based gel polymer electrolytes. J Electrochem Soc 157:A105–A114 CrossRef
    34. Pandey GP, Hashmi SA, Kumar Y (2010) Performance studies of activated charcoal based electrical double layer capacitors with ionic liquid gel polymer electrolytes. Energy Fuels 24:6644-652 CrossRef
    35. Zhang K, Mao L, Zhang LL, Chan HSO, Zhao XS, Wu J (2011) Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. J Mater Chem 21:7302-307 CrossRef
    36. Li L, Qiu J, Wang S (2013) Three-dimensional ordered nanostructures for supercapacitor electrode. Electrochim Acta 99:278-84 CrossRef
    37. Wang YG, Li HQ, Xia YY (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619-623 CrossRef
    38. Wang G, Huang J, Chen S, Gao Y, Cao D (2011) Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J Power Sources 196:5756-760 CrossRef
    39. Jaidev RS (2012) Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications. J Mater Chem 22:18775-8738 CrossRef
  • 作者单位:Yunqiang Zhang (1)
    Mei Li (1) (2) (3)
    Lanlan Yang (1)
    Kaihua Yi (1)
    Zhen Li (1)
    Jinshui Yao (1) (2) (3)

    1. School of Materials Science and Engineering, Qilu University of Technology, Daxue Road, Western University Science Park, 250353, Jinan, Shandong, People’s Republic of China
    2. Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics, Jinan, 250353, People’s Republic of China
    3. Key Laboratory of Amorphous and Polycrystalline Materials, Qilu University of Technology, Jinan, 250353, People’s Republic of China
  • ISSN:1433-0768
文摘
The layered polypyrrole-graphene oxide-sodium dodecylbenzene sulfonate (PPyGO-SDBS) nanocomposites were facilely fabricated via an in situ emulsion polymerization method with the assistance of SDBS as dopant and stabilizer. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and electrochemical performance were employed to analyze the structure and the characteristics of the composites. The results showed that SDBS played an important role in improving the electrochemical performance of the PPyGO-SDBS, by dispersing the PPy between the layers of the GO. The obtained PPyGO-SDBS exhibited remarkable performance as an electrode material for supercapacitors, with a specific capacitance as high as 483?F?g? at a current density of 0.2?A?g? when the mass ratio of pyrrole to GO was 80:20. The attenuation of the specific capacitance was less than 20?% after 1,000 charge–discharge processes, supporting the idea that PPy inserted successfully into the GO interlayers. The excellent electrochemical performance seemed to arise from the synergistic effect between the PPy and the GO and the dispersion of the PPy induced by SDBS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700