用户名: 密码: 验证码:
Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations
详细信息    查看全文
  • 作者:Changjian Wang (1) (2)
    Xiaolei Zhang (1)
    Fei Wang (1) (2)
    Jun Lei (1)
    Li Zhang (3)

    1. State Key Laboratory of Desert and Oasis Ecology
    ; Xinjiang Institute of Ecology and Geography ; Chinese Academy of Sciences ; Urumqi ; 830011 ; China
    2. University of Chinese Academy of Sciences
    ; Beijing ; 100049 ; China
    3. Fujian Urban & Rural Planning Design Institute
    ; Fuzhou ; 350003 ; China
  • 关键词:carbon emissions ; Xinjiang ; index decomposition analysis ; mitigation policy recommendations
  • 刊名:Frontiers of Earth Science
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:9
  • 期:1
  • 页码:65-76
  • 全文大小:911 KB
  • 参考文献:1. Ang B W (2005). The LMDI approach to decomposition analysis: a practical guide. Energy Policy, 33(7): 867鈥?71 CrossRef
    2. Ang BW, Liu F L (2001). A new energy decomposition method: perfect in decomposition and consistent in aggregation. Energy, 26(6): 537鈥?48 CrossRef
    3. Ang B W, Liu F L, Chew E P (2003). Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 31(14): 1561鈥?566 CrossRef
    4. Ang B W, Zhang F Q, Choi K H (1998). Factorizing changes in energy and environmental indicators through decomposition. Energy, 23(6): 489鈥?95 CrossRef
    5. Casler S, Rose A (1998). Carbon dioxide emissions in the U.S. economy: a structural decomposition analysis. Environ Resour Econ, 11(3/4): 349鈥?63 CrossRef
    6. Chen G Q, Guo S, Shao L, Li J S, Chen Z M (2013). Three-scale input-output modeling for urban economy: carbon emission by Beijing 2007. Commun Nonlinear Sci Numer Simul, 18(9): 2493鈥?506 CrossRef
    7. Chen G Q, Shao L, Chen Z M, Li Z, Zhang B, Chen H, Wu Z (2011a). Low-carbon assessment for ecological wastewater treatment by a constructed wetland in Beijing. Ecol Eng, 37(4): 622鈥?28 CrossRef
    8. Chen G Q, Zhang B (2010). Greenhouse gas emissions in China 2007: inventory and input-output analysis. Energy Policy, 38(10): 6180鈥?193 CrossRef
    9. Chen Q, Kang C, Xia Q, Guan D (2011b). Preliminary exploration on low-carbon technology roadmap of China鈥檚 power sector. Energy, 36(3): 1500鈥?512 CrossRef
    10. Chen Z M, Chen G Q (2011). Embodied carbon dioxide emission at supra-national scale: a coalition analysis for G7, BRIC, and the rest of the world. Energy Policy, 39(5): 2899鈥?909 CrossRef
    11. Davis S J, Caldeira K (2010). Consumption-based accounting of CO2 emissions. Proc Natl Acad Sci USA, 107(12): 5687鈥?692 CrossRef
    12. Friedlingstein P, Houghton R A, Marland G, Hackler J, Boden T A, Conway T J, Canadell J G, Raupach M R, Ciais P, Le Qu茅r茅 C (2010). Update on CO2 emissions. Nat Geosci, 3(12): 811鈥?12 CrossRef
    13. Geng Y, Zhao H, Liu Z, Xue B, Fujita T, Xi F (2013). Exploring driving factors of energy-related CO2 emissions in Chinese provinces: a case of Liaoning. Energy Policy, 60: 820鈥?26 CrossRef
    14. Glomsr酶d S, Wei T Y (2005). Coal cleaning: a viable strategy for reduced carbon emissions and improved environment in China?. Energy Policy, 33(4): 525鈥?42 CrossRef
    15. Guan D, Hubacek K, Weber C L, Peters G P, Reiner D M (2008). The drivers of Chinese CO2 emissions from 1980 to 2030. Glob Environ Change, 18(4): 626鈥?34 CrossRef
    16. Guan D, Peters G P, Weber C L, Hubacek K (2009). Journey to world top emitter鈥擜n analysis of the driving forces of China鈥檚 recent CO2 emissions surge. Geophys Res Lett, 36(4): L04709 CrossRef
    17. Hoekstra R, van den Bergh J C J M (2003). Comparing structural decomposition analysis and index. Energy Econ, 25(1): 39鈥?4 CrossRef
    18. Larson E D, Wu Z X, DeLaquil P, Chen W Y, Gao P F (2003). Future implications of China鈥檚 energy-technology choices. Energy Policy, 31(12): 1189鈥?204 CrossRef
    19. Lee C F, Lin S J (2001). Structural decomposition of CO2 emissions from Taiwan鈥檚 petrochemical industries. Energy Policy, 29(3): 237鈥?44 CrossRef
    20. Li C, Ge X, Zheng Y, Xu C, Ren Y, Song C, Yang C (2013a). Technoeconomic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China. Energy, 55: 263鈥?72 CrossRef
    21. Li J S, Chen G Q, Lai T M, Ahmad B, Chen Z M, Shao L, Ji X (2013b). Embodied greenhouse gas emission by Macao. Energy Policy, 59: 819鈥?33 CrossRef
    22. Liang S, Xu M, Suh S, Tan R R (2013). Unintended environmental consequences and co-benefits of economic restructuring. Environ Sci Technol, 47(22): 12894鈥?2902 CrossRef
    23. Liang S, Zhang T (2011a). Interactions of energy technology development and new energy exploitation with water technology development in China. Energy, 36(12): 6960鈥?966 CrossRef
    24. Liang S, Zhang T (2011b). What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province. Energy Policy, 39(11): 7078鈥?083 CrossRef
    25. Liao H, Fan Y, Wei Y M (2007). What induced China鈥檚 energy intensity to fluctuate: 1997鈥?006? Energy Policy, 35(9): 4640鈥?649 CrossRef
    26. Lin J, Liu Y, Meng F, Cui S, Xu L (2013). Using hybrid method to evaluate carbon footprint of Xiamen City, China. Energy Policy, 58: 220鈥?27 CrossRef
    27. Liu L C, Fan Y, Wu G, Wei Y M (2007). Using LMDI method to analyzed the change of China鈥檚 industrial CO2 emissions from final fuel use: an empirical analysis. Energy Policy, 35(11): 5892鈥?900 CrossRef
    28. Liu Z, Geng Y, Lindner S, Guan D (2012). Uncovering China鈥檚 greenhouse gas emission from regional and sectoral perspectives. Energy, 45(1): 1059鈥?068 CrossRef
    29. Lu Y, Stegman A, Cai Y (2013). Emissions intensity targeting: from China鈥檚 12th Five Year Plan to its Copenhagen commitment. Energy Policy, 61: 1164鈥?177 CrossRef
    30. Ma C, Stern D I (2008). Biomass and China鈥檚 carbon emissions: a missing piece of carbon decomposition. Energy Policy, 36(7): 2517鈥?526 CrossRef
    31. Ma Z, Xue B, Geng Y, Ren W, Fujita T, Zhang Z, Puppim de Oliveira J A, Jacques D A, Xi F (2013). Co-benefits analysis on climate change and environmental effects of wind-power: a case study from Xinjiang, China. Renew Energy, 57: 35鈥?2 CrossRef
    32. Mahony T O (2013). Decomposition of Ireland鈥檚 carbon emissions from 1990 to 2010: an extended Kaya identity. Energy Policy, 59: 573鈥?81 CrossRef
    33. Raupach M R, Marland G, Ciais P, Le Qu茅r茅 C, Canadell J G, Klepper G, Field C B (2007). Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci USA, 104(24): 10288鈥?0293 CrossRef
    34. Rose A, Casler S (1996). Input-output structural decomposition analysis: a critical appraisal. Econ Syst Res, 8(1): 33鈥?2 CrossRef
    35. Steckel J C, Jakob M, Marschinski R, Luderer G (2011). From carbonization to decarbonization? Past trends and future scenarios for China鈥檚 CO2 emissions. Energy Policy, 39(6): 3443鈥?455 CrossRef
    36. Tian X, Chang M, Tanikawa H, Shi F, Imura H (2013). Structural decomposition analysis of the carbonization process in Beijing: a regional explanation of rapid increasing carbon dioxide emission in China. Energy Policy, 53: 279鈥?86 CrossRef
    37. Wang C, Chen J N, Zou J (2005). Decomposition of energy-related CO2 emission in China: 1957鈥?000. Energy, 30(1): 73鈥?3 CrossRef
    38. Wang C, Wang F, Li L, Zhang X (2013a). Wake-up call for China to reevaluate its shale-gas ambition. Environ Sci Technol, 47(21): 11920鈥?1921 CrossRef
    39. Wang C, Wang F, Wang Q, Yang D, Li L, Zhang X (2013b). Preparing for Myanmar鈥檚 environment-friendly reform. Environ Sci Policy, 25: 229鈥?33 CrossRef
    40. Wang C, Wang Q, Wang F (2012). Is Vietnam ready for nuclear power?. Environ Sci Technol, 46(10): 5269鈥?270 CrossRef
    41. Wang Y, Liang S (2013). Carbon dioxide mitigation target of China in 2020 and key economic sectors. Energy Policy, 58: 90鈥?6 CrossRef
    42. Wang Y, Zhao H, Li L, Liu Z, Liang S (2013c). Carbon dioxide emission drivers for a typical metropolis using input-output structural decomposition analysis. Energy Policy, 58: 312鈥?18 CrossRef
    43. Wu L B, Kaneko S, Matsuoka S (2005). Driving forces behind the stagnancy of China鈥檚 energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change. Energy Policy, 33(3): 319鈥?35 CrossRef
    44. Xi F, Geng Y, Chen X, Zhang Y, Wang X, Xue B, Dong H, Liu Z, Ren W, Fujita T, Zhu Q (2011). Contributing to local policy making on GHG emission reduction through inventorying and attribution: a case study of Shenyang, China. Energy Policy, 39(10): 5999鈥?010 CrossRef
    45. Xia X H, Huang G T, Chen G Q, Zhang B, Chen Z M, Yang Q (2011). Energy security, efficiency and carbon emission of Chinese industry. Energy Policy, 39(6): 3520鈥?528 CrossRef
    46. Xu J H, Fleiter T, Eichhammer W, Fan Y (2012). Energy consumption and CO2 emissions in China鈥檚 cement industry: a perspective from LMDI decomposition analysis. Energy Policy, 50: 821鈥?32 CrossRef
    47. Zhang M, Mu H, Ning Y (2009a). Accounting for energy-related CO2 emission in China, 1991鈥?006. Energy Policy, 37(3): 767鈥?73 CrossRef
    48. Zhang M, Mu H, Ning Y, Song Y (2009b). Decomposition of energyrelated CO2 emission over 1991鈥?006 in China. Ecol Econ, 68(7): 2122鈥?128 CrossRef
    49. Zhang Z, Guo J, Qian D, Xue Y, Cai L (2013). Effects and mechanism of influence of China鈥檚 resource tax reform: a regional perspective. Energy Econ, 36: 676鈥?85 CrossRef
    50. Zhao M, Tan L, Zhang W, Ji M, Liu Y, Yu L (2010). Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method. Energy, 35(6): 2505鈥?510 CrossRef
  • 刊物主题:Earth Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2095-0209
文摘
Regional carbon emissions research is necessary and helpful for China in realizing reduction targets. The LMDI I (Logarithmic Mean Divisia Index I) technique based on an extended Kaya identity was conducted to uncover the main five driving forces for energy-related carbon emissions in Xinjiang, an important energy base in China. Decomposition results show that the affluence effect and the population effect are the two most important contributors to increased carbon emissions. The energy intensity effect had a positive influence on carbon emissions during the pre-reform period, and then became the dominant factor in curbing carbon emissions after 1978. The renewable energy penetration effect and the emission coefficient effect showed important negative but relatively minor effects on carbon emissions. Based on the local realities, a comprehensive suite of mitigation policies are raised by considering all of these influencing factors. Mitigation policies will need to significantly reduce energy intensity and pay more attention to the regional economic development path. Fossil fuel substitution should be considered seriously. Renewable energy should be increased in the energy mix. All of these policy recommendations, if implemented by the central and local government, should make great contributions to energy saving and emission reduction in Xinjiang.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700