用户名: 密码: 验证码:
A microfluidic system for the study of the response of endothelial cells under pressure
详细信息    查看全文
  • 作者:Lei Li (1)
    Yang Yang (1)
    Xuetao Shi (2)
    Hongkai Wu (2) (3)
    Hongda Chen (4)
    Jing Liu (1)
  • 关键词:Microfluidic system ; Endothelial cells ; Pressure ; Shear stress
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:16
  • 期:6
  • 页码:1089-1096
  • 全文大小:1,009 KB
  • 参考文献:1. Barkefors I, Thorslund S, Nikolajeff F, Kreuger J (2009) A fluidic device to study directional angiogenesis in complex tissue and organ culture models. Lab Chip 9(4):529-35. doi:10.1039/b814691h CrossRef
    2. Cooke BM, Usami S, Perry I, Nash GB (1993) A simplified method for culture of endothelial cells and analysis of adhesion of blood cells under conditions of flow. Microvasc Res 45(1):33-5. doi:10.1006/mvre.1993.1004 CrossRef
    3. Cutler JA, Sorlie PD, Wolz M, Thom T, Fields LE, Roccella EJ (2008) Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988-994 and 1999-004. Hypertension 52(5):818-27. doi:10.1161/HYPERTENSIONAHA.108.113357 CrossRef
    4. Davies PF, Barbee KA, Volin MV, Robotewskyj A, Chen J, Joseph L, Griem ML, Wernick MN, Jacobs E, Polacek DC, dePaola N, Barakat AI (1997) Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annu Rev Physiol 59:527-49. doi:10.1146/annurev.physiol.59.1.527 CrossRef
    5. Diamond SL, Eskin SG, McIntire LV (1989) Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243(4897):1483-485 CrossRef
    6. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974-984 CrossRef
    7. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403-11. doi:10.1038/nature05063 CrossRef
    8. Eskin SG, Ives CL, McIntire LV, Navarro LT (1984) Response of cultured endothelial cells to steady flow. Microvasc Res 28(1):87-4 CrossRef
    9. Estrada R, Giridharan GA, Nguyen MD, Roussel TJ, Shakeri M, Parichehreh V, Prabhu SD, Sethu P (2011) Endothelial cell culture model for replication of physiological profiles of pressure, flow, stretch, and shear stress in vitro. Anal Chem 83(8):3170-177. doi:10.1021/ac2002998 CrossRef
    10. Gallik S, Usami S, Jan KM, Chien S (1989) Shear stress-induced detachment of human polymorphonuclear leukocytes from endothelial cell monolayers. Biorheology 26(4):823-34
    11. Gray BL, Lieu DK, Collins SD, Smith RL, Barakat AI (2002) Microchannel platform for the study of endothelial cell shape and function. Biomed Microdevices 4(1):9-6 CrossRef
    12. Hishikawa K, Nakaki T, Marumo T, Suzuki H, Kato R, Saruta T (1995) Pressure enhances endothelin-1 release from cultured human endothelial cells. Hypertension 25(3):449-52
    13. Iglarz M, Schiffrin EL (2003) Role of endothelin-1 in hypertension. Curr Hypertens Rep 5(2):144-48 CrossRef
    14. Levesque MJ, Nerem RM, Sprague EA (1990) Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials 11(9):702-07 CrossRef
    15. Muller-Marschhausen K, Waschke J, Drenckhahn D (2008) Physiological hydrostatic pressure protects endothelial monolayer integrity. Am J Physiol Cell Physiol 294(1):C324–C332. doi:10.1152/ajpcell.00319.2007 CrossRef
    16. Ono O, Ando J, Kamiya A, Kuboki Y, Yasuda H (1991) Flow effects on cultured vascular endothelial and smooth muscle cell functions. Cell Struct Funct 16(5):365-74 CrossRef
    17. Sainani GS, Maru VG (2004) Role of endothelial cell dysfunction in essential hypertension. J Assoc Physicians India 52:966-69
    18. Schiffrin EL (2001) Role of endothelin-1 in hypertension and vascular disease. Am J Hypertens 14(6 Pt 2):83S-9S CrossRef
    19. Schwartz EA, Bizios R, Medow MS, Gerritsen ME (1999) Exposure of human vascular endothelial cells to sustained hydrostatic pressure stimulates proliferation. Involvement of the alphaV integrins. Circ Res 84(3):315-22 CrossRef
    20. Shamloo A, Ma N, Poo MM, Sohn LL, Heilshorn SC (2008) Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8):1292-299. doi:10.1039/b719788h CrossRef
    21. Shichiri M, Hirata Y, Ando K, Emori T, Ohta K, Kimoto S, Ogura M, Inoue A, Marumo F (1990) Plasma endothelin levels in hypertension and chronic renal failure. Hypertension 15(5):493-96 CrossRef
    22. Song JW, Gu W, Futai N, Warner KA, Nor JE, Takayama S (2005) Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Anal Chem 77(13):3993-999. doi:10.1021/ac050131o CrossRef
    23. Sumpio BE, Widmann MD, Ricotta J, Awolesi MA, Watase M (1994) Increased ambient pressure stimulates proliferation and morphologic changes in cultured endothelial cells. J Cell Physiol 158(1):133-39. doi:10.1002/jcp.1041580117 CrossRef
    24. Thorin-Trescases N, Bartolotta T, Hyman N, Penar PL, Walters CL, Bevan RD, Bevan JA (1997) Diameter dependence of myogenic tone of human pial arteries possible relation to distensibility. Stroke 28(12):2486-492 CrossRef
    25. Tkachenko E, Gutierrez E, Ginsberg MH, Groisman A (2009) An easy to assemble microfluidic perfusion device with a magnetic clamp. Lab Chip 9(8):1085-095. doi:10.1039/b812184b CrossRef
    26. Tokunaga O, Watanabe T (1987) Properties of endothelial cell and smooth muscle cell cultured in ambient pressure. In Vitro Cell Dev Biol 23(8):528-34 CrossRef
    27. van der Meer AD, Poot AA, Duits MH, Feijen J, Vermes I (2009) Microfluidic technology in vascular research. J Biomed Biotechnol 2009:823148. doi:10.1155/2009/823148
    28. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332(6163):411-15. doi:10.1038/332411a0 CrossRef
  • 作者单位:Lei Li (1)
    Yang Yang (1)
    Xuetao Shi (2)
    Hongkai Wu (2) (3)
    Hongda Chen (4)
    Jing Liu (1)

    1. Key Laboratory of Cryogenics & Beijing Key Laboratory of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS), Beijing, 100190, China
    2. WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
    3. Department of Chemistry, Hongkong University of Science and Technology, Hongkong, China
    4. State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
  • ISSN:1613-4990
文摘
Hydrostatic pressure can affect the structure and function of endothelial cells (ECs). A microfluidic system was built to study how ECs respond to applied pressure. The system included a syringe pump, a PDMS-glass microfluidic chip, and a digital manometer for pressure monitoring. The manometer was connected with the chip in two ways (one was before the inlet and the other after the outlet of the microchannel). The static control and flowing control systems were also set up. Human umbilical vein endothelial cells (HUVECs)?were cultured in the 4?cm?×?2?mm?×?100?μm channel. Pressure of 12?±?0.5 or 18?±?0.5?kPa was applied on the cells for 8?h. The F-actin cytoskeleton and the nuclei of the cells were stained for examination and endothelin-1 (ET-1) released from the cells in the channel was assayed by ELISA. The results showed that the cell area and ET-1 concentration increased with the pressure and a higher pressure caused more damages to the cells. This microfluidic system provides a convenient and cost-effective platform for the studies of cell response to pressure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700