用户名: 密码: 验证码:
Subfossil Cladocera from surface sediment in thermokarst lakes in northeastern Siberia, Russia, in relation to limnological and climatic variables
详细信息    查看全文
  • 作者:Larisa Frolova (1)
    Larisa Nazarova (1) (2)
    Ludmila Pestryakova (3)
    Ulrike Herzschuh (2) (4)
  • 关键词:Cladocera ; Russian Arctic ; Temperature ; Water depth ; Palaeolimnology
  • 刊名:Journal of Paleolimnology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:52
  • 期:1-2
  • 页码:107-119
  • 全文大小:2,324 KB
  • 参考文献:1. Anderson NJ, Battarbee RW (1994) Aquatic community persistence and variability: a palaeolimnological perspective. In: Giller PS, Hildrew AG, Raffaelli DG (eds) Aquatic ecology: scale, pattern and process. Blackwell, Oxford, pp 233-59
    2. Arctic Climate Impact Assessment (ACIA) (2005) Arctic climate impact assessment. Cambridge University Press, Cambridge
    3. Arktiki Atlas (1985) Atlas of the Arctic. In: Treshnikov AF, Korotkevich ES, Kruchinin YA, Markov VF (eds) Main Administration for Geodesy and Cartography. Ministry Council of the USSR, Moscow (original in Russian)
    4. Atlas selskogo khozyaistva Yakutskoi ASSR (1989) Agricultural Atlas of the Yakut ASSR. In: Matveev IA (ed) Glavnoe Upravlenie Geodezii i Kartografii. Ministertva Geologii Ochrany Nedr SSSR, Moscow (original in Russian)
    5. Belyaeva M, Taylor DJ (2009) Cryptic species within the / Chydorus sphaericus species complex (Crustacea: Cladocera) revealed by molecular markers and sexual stage morphology. Mol Phylogenet Evol 50:534-46 CrossRef
    6. Birks HJB (1995) Quantitative palaeoenvironmental reconstructions. In: Maddy DJ, Brew S (eds) Statistical modelling of quaternary science data. Quaternary Research Association, Cambridge, pp 161-54
    7. Blomqvist S (1990) Sampling performance of Ekman grabs—in situ observations and design improvements. Hydrobiologia 206:245-54 CrossRef
    8. Chistyakov GE (1964) Waterresources in Yakutia. Nauka, Moscow (in Russian)
    9. Davidson TA, Sayer CD, Perrow MR, Bramm M, Jeppesen E (2007) Are the controls of species composition similar for contemporary and subfossil cladoceran assemblages? A study of 39 shallow lakes of contrasting trophic status. J Paleolimnol 38:117-34 CrossRef
    10. DeSellas AM, Paterson AM, Sweetman JN, Smol JP (2008) Cladocera assemblages from the surface sediments of southcentral Ontario (Canada) lakes and their relationships to measured environmental variables. Hydrobiologia 600:105-19 CrossRef
    11. Duigan CA, Frey DG (1987) / Eurycercus glacialis in Ireland (Cladocera, Chydoridae). Int Revue ges Hydrobiol 72(2):235-49 CrossRef
    12. Fl?ssner D (2000) Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden
    13. Frey DG (1959) The taxonomic and phylogenic significance of the head pores of the Chydoridae (Cladocera). Inter Rev ges Hydrobiol 44:27-0 CrossRef
    14. Frey DG (1973) Comparative morphology and biology of three species of / Eurycercus (Chydoridae: Cladocera) with a description of / Eurycercus macrocanthus sp. nov. Int Revue ges Hydrob 58:221-67 CrossRef
    15. Frolova LA, Nazarova LB, Pestryakova LA, Herzschuh U (2013) Analysis of the effects of climate-dependent factors on the formation of zooplankton communities that inhabit arctic lakes in the Anabar river basin. Contemp Prob Ecol 6:1-1 CrossRef
    16. Gabyshev VA, Gabysheva OI (2010) Water quality of the Anabar River indicated by phytoplankton structure and hydrochemical characteristics. Contemp Prob Ecol 3:395-00 CrossRef
    17. Gavrilova MK (1998) Klimaty kholodnykh regionov zemli (Climates of cold regions in the world). Russian Science Academy (Siberian Branch Publishers), Yakutsk (in Russian)
    18. Grimm EC (1987) CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 113:13-5 CrossRef
    19. Grimm EC (1993) TILIA 2.0.b.4 (Computer software). Illinois State Museum, Research and Collections Center, Springfield
    20. Hall RI, Smol JP (1996) Paleolimnological assessment of long-term water-quality changes in south-central Ontario lakes affected by cottage development and acidification. Can J Fish Aqua Sci 53:1-7 CrossRef
    21. Harmsworth RV (1968) The developmental history of Blelham Tarn (England) as shown by animal microfossils, with special reference to the Cladocera. Ecol Monogr 38:223-41 CrossRef
    22. Hessen DO, Faafeng BA, Smith VA, Bakkestuen V, Walseng B (2006) Extrinsic and intrinsic controls of zooplankton diversity in lakes. Ecology 87:433-43 CrossRef
    23. Hofmann W (1978) / Bosmina (Eubosmina) populations of Grosser Pl?ner See and Sch?hsee lakes during late-glacial and postglacial times. Pol Arch Hydrobiol 25:167-76
    24. Intergovernmental Panel on Climate Change (IPCC) (2007) Report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment. Cambridge University Press, Cambridge CrossRef
    25. Jeppesen E, Leavitt P, De Meester L, Jensen JP (2001) Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol Evol 16:191-98 CrossRef
    26. Karavaev MP, Skryabin SZ (1971) Rastitel’nyi mir Yukutii (Vegetation of Yakutia). Yakutian Publishing House, Yakutsk (in Russian)
    27. Keller W, Conlon M (1994) Crustacean zooplankton communities and lake morphometry in Precambrian Shield lakes. Can J Fish Aquat Sci 51:2424-434 CrossRef
    28. Kienast F, Wetterich S, Kuzmina S, Schirrmeister L, Andreev AA, Tarasov P, Nazarova L, Kossler A, Frolova L, Kunitsky VV (2011) Paleontological records prove boreal woodland under dry inland climate at today’s Arctic coast in Beringia during the last interglacial. Quat Sci Rev 30:2134-159 CrossRef
    29. Kirilov AF, Kholodov VV, IGl Sobakina et al (2007) Biology of the river Anabar. Publishing House of YSC, Yakutsk (original in Russian)
    30. Korhola A (1999) Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22:357-73 CrossRef
    31. Korhola A, Rautio M (2001) Cladocera and other branchiopod crustaceans. In: Smol JP, Birks JB, Last WM (eds) Tracking environmental change using lake sediments, vol: zoological indicators. Kluwer Academic Publishers, Dordrecht, pp 5-1 CrossRef
    32. Korhola A, Olander H, Blom T (2000) Cladoceran and chironomid assemblages as qualitative indicators of water depth in subarctic Fennoscandian lakes. J Paleolimnol 24:43-4 CrossRef
    33. Lotter AF, Birks HJB, Hofmann W, Marchetto A (1997) Modern diatom, Cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J Paleolimnol 18:395-20 CrossRef
    34. Manuilova EF (1964) Vetvistousye rachki fauny SSSR. Nauka, Moskva-Leningrad. (Cladocera of the USSR) (In Russian)
    35. Minakawa N, Tanaka S, Bogatov VV (2006) Occurrence of / Eurycercus (Teretifrons) / glacialis (Lilijeborgem 1887) (Cladocera, Chydoridae) on Sakhalin Island. Biodivers Biogeogr Kuril Isl Sakhalin 2:111-14
    36. Nevalainen L, Luoto TP (2013) Limnological deterioration forces community and phenotypic changes in Cladocera: tracking eutrophication Mallusj?rvi, a lake in southern Finland. Boreal Environ Res 18:209-22
    37. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Climate Res 21:1-5 CrossRef
    38. Petersen A (2010) Emerging issues and challenges. In: Kurvits T, Alfthan B, Mork E (eds) Arctic biodiversity trends 2010—selected indicators of change. CAFF International Secretariat, Akureyi, pp 15-6
    39. Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131-44 CrossRef
    40. Rautio M (1998) Community structure of crustacean zooplankton in subarctic ponds—effects of altitude and physical heterogeneity. Ecography 21:327-35 CrossRef
    41. Reed EB (1959) The distribution and ecology of freshwater entomostraca in Arctic and subarctic North America. Ph.D. thesis, University of Saskatchewan, SK, Canada
    42. Rossolimo LL (1971) Ozernoe nakoplenie kremniia i ego tipologicheskoe znachenie (Lake accumulation of silica and its topological meaning). Nauka, Leningrad (original in Russia)
    43. Samchyshyna L, Hansson L-A, Christoversen K (2008) Patterns in the distribution of Arctic freshwater zooplankton related to glaciation history. Polar Biol 31:1427-435 CrossRef
    44. Sarmaja-Korjonen K, Alhonen P (1999) Cladoceran and diatom evidence of lake-level fluctuations from a Finnish lake and the effect of aquatic-moss layers on microfossil assemblages. J Paleolim 22:277-90 CrossRef
    45. Sarmaja-Korjonen K, Nyman M, Kultti S, Valiranta M (2006) Palaeolimnological development of Lake Njargajavri, northern Finnish Lapland, in a changing Holocene climate and environment. J Paleolimnol 35:65-1 CrossRef
    46. Shannon CE, Weaver W (1963) The mathematical theory of communication. Univ. Illinois Press, Illinois
    47. Smirnov NN (1974) Fauna of the U.S.S.R., Crustacea. Academy of Sciences of the U.S.S.R. Translated from Russian, Israel Program for Scientific Translations, Jerusalem, New Series No. 101
    48. Smirnov NN (1996) Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the world. Guides to the identification of the microivertebrates of the Continental Waters of the world. SPB Academic Publishing, Amsterdam
    49. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W. H. Freeman and Co, New York
    50. Swadling KM, Pienitz R, Nogrady T (2000) Zooplankton community composition of lakes in the Yukon and Northwest Territories (Canada): relationship to physical and chemical limnology. Hydrobiologia 431:211-24 CrossRef
    51. Sweetman JN, Smol JP (2006) Patterns in the distribution of Cladocerans (Crustacea: Branchiopoda) in lakes across a north–south transect in Alaska, USA. Hydrobiologia 553:277-91 CrossRef
    52. Sweetman JN, Rühland KM, Smol JP (2010) Environmental and spatial factors influencing the distribution of cladocerans in lakes across the central Canadian Arctic treeline region. J Limnol 69:1-2 CrossRef
    53. Szeroczyńska K, Sarmaja-Korjonen K (2007) Atlas of Subfossil Cladocera from Central and Northern Europe. wyd. Towarzystwo Przyjació? Dolnej Wis?y, ?wiecie
    54. ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271-17 CrossRef
    55. ter Braak CJF, ?milauer P (2002) CANOCO reference manual and CanoDraw for Window’s User’s guide: software for canonical community ordination (Version 4.5). Microcomputer Power, Ithaca, NY, USA
    56. Walker DA (2000) Hierarchical subdivision of Arctic tundra based on vegetation response to climate, parent material, and topography. Glob Chang Biol 6:19-4 CrossRef
    57. Wetterich S, Schirrmeister L, Meyer H, Viehberg FA, Mackensen A (2008) Arctic freshwater ostracods from modern periglacial environment in the Lena River Delta (Siberian Arctic, Russia): geochemical applications for palaeoenvironmental reconstructions. J Paleolimnol 39:427-49 CrossRef
  • 作者单位:Larisa Frolova (1)
    Larisa Nazarova (1) (2)
    Ludmila Pestryakova (3)
    Ulrike Herzschuh (2) (4)

    1. Kazan Federal University, Kremlyovskaya str. 18, 420008, Kazan, Russia
    2. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research - Research Unit Potsdam, Telegrafenberg A43, 14473, Potsdam, Germany
    3. North-Eastern Federal University, 58 Belinsky Street, 677891, Yakutsk, Russia
    4. University of Potsdam, Am Neuen Palais 10, 14469, Potsdam, Germany
  • ISSN:1573-0417
文摘
Subfossil Cladocera were sampled and examined from the surface sediments of 35 thermokarst lakes along a temperature gradient crossing the tree line in the Anabar-river basin in northwestern Yakutia, northeastern Siberia. The lakes were distributed through three environmental zones: typical tundra, southern tundra and forest tundra. All lakes were situated within the continuous permafrost zone. Our investigation showed that the cladoceran communities in the lakes of the Anabar region are diverse and abundant, as reflected by taxonomic richness, and high diversity and evenness indices (H?=?1.89?±?0.51; I?=?0.8?±?0.18). CONISS cluster analysis indicated that the cladoceran communities in the three ecological zones (typical tundra, southern tundra and forest-tundra) differed in their taxonomic composition and structure. Differences in the cladoceran assemblages were related to limnological features and geographical position, vegetation type, climate and water chemistry. The constrained redundancy analysis indicated that TJuly, water depth and both sulphate (SO4 2?/sup>) and silica (Si4+) concentrations significantly (p?≤?.05) explained variance in the cladoceran assemblage. TJuly featured the highest percentage (17.4?%) of explained variance in the distribution of subfossil Cladocera. One of the most significant changes in the structure of the cladoceran communities in the investigated transect was the replacement of closely related species along the latitudinal and vegetation gradient. The results demonstrate the potential for a regional cladoceran-based temperature model for the Arctic regions of Russia, and for and Yakutia in particular.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700