用户名: 密码: 验证码:
The non-isothermal cyclization kinetics of amino-functionalized carbon nanotubes/polyacrylonitrile composites by in situ polymerization
详细信息    查看全文
  • 作者:Ling Quan (1)
    Hailong Zhang (2) (3)
    Lianghua Xu (3)

    1. School of Electric Power
    ; North China University of Water Resources and Electric Power ; Zhengzhou ; 450045 ; China
    2. School of Civil Engineering and Communication
    ; North China University of Water Resources and Electric Power ; Zhengzhou ; 450045 ; China
    3. Key Laboratory of Carbon Fiber and Functional Polymers
    ; Ministry of Education ; Beijing University of Chemical Technology ; Beijing ; 100029 ; China
  • 关键词:Polyacrylonitrile ; Amino ; functionalized carbon nanotube ; Composites ; Non ; isothermal cyclization kinetics ; In situ polymerization
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:119
  • 期:2
  • 页码:1081-1089
  • 全文大小:1,266 KB
  • 参考文献:1. Hu XP, Hsieh YL. Structure of acrylic fibres prior to cyclization. Polymer. 1997;38:1491鈥?. CrossRef
    2. Badawy SM, Dessouki AM. Cross-linked polyacrylonitrile prepared by radiation-induced polymerization technique. J Phys Chem B. 2003;107:11273鈥?. CrossRef
    3. Bashir Z, Rastogi S. The explanation of the increase in slope at the Tg in the plot of d-spacing versus temperature in polymerization. J Macromol Sci, Phys. 2005;44:55鈥?8. CrossRef
    4. Fazlitdinova AG, Tyumentsev VA, Podkopayev SA, Shveikin GP. Changes of polyacrylonitrile fiber fine structure during thermal stabilization. J Mater Sci. 2010;45:3998鈥?005. CrossRef
    5. Wu SH, Qin XH. Effects of the stabilization temperature on the structure and properties of polyacrylonitrile-based stabilized electrospun nanofiber microyarns. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-013-3530-4 .
    6. Ju Am XuH, Ge M. Preparation and thermal properties of poly[acrylonitrile-co-(尾-methylhydrogen itaconate)] used as carbon fiber precursor. J Therm Anal Calorim. 2014;115(2):1037鈥?7. CrossRef
    7. Fitzer E, Muller DJ. The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor. Carbon. 1975;13:63鈥?. CrossRef
    8. Devasia R, Nair CPR, Sivadasan P, Katherine BK, Ninan KN. Cyclization reaction in poly(acrylonitrile/itaconic acid) copolymer: an isothermal differential scanning calorimetry. J Appl Polym Sci. 2003;88:915鈥?0. CrossRef
    9. Ouyang Q, Cheng L, Wang HJ, Li KX. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stab. 2008;93:1415鈥?1. CrossRef
    10. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56鈥?. CrossRef
    11. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature. 1996;382:54鈥?. CrossRef
    12. Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science. 2003;300:775鈥?. CrossRef
    13. Barraze HJ, Pompeo F, O鈥橰ear EA, Resasco DE. SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization. Nano Lett. 2002;2:797鈥?02. CrossRef
    14. Li J, Fang Z, Tong L, Gu A, Liu F. Effect of multi-walled carbon nanotubes on non-isothermal crystallization kinetics of polyamide 6. Eur Polym J. 2006;42:3230鈥?. CrossRef
    15. Li J, Fang Z, Zhu Y, Tong L, Gu A, Liu F. Isothermal crystallization kinetics and melting behavior of multiwalled carbon nanotubes/polyamide-6 composites. J Appl Polym Sci. 2007;105:3531鈥?2. CrossRef
    16. Chen EC, Wu TM. Isothermal and nonisothermal crystallization kinetics of nylon 6/functionalized multiwalled carbon nanotube composites. J Polym Sci Part B. 2008;46:158鈥?9. CrossRef
    17. Ke K, Wen R, Wang Y, Yang W, Xie BH, Yang MB. Crystallization behavior of poly(vinylidene fluoride)/multi-walled carbon nanotubes nanocomposites. J Mater Sci. 2011;46:1542鈥?0. CrossRef
    18. Pilawka R, Paszkiewicz S, Roslaniec Z. Thermal degradation kinetics of PET/SWCNTs nanocomposites prepared by the in situ polymerization. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3239-4 .
    19. Vassiliou AA, Chrissafis K, Bikiaris DN. Thermal degradation kinetics of in situ prepared PET nanocomposites with acid-treated multi-walled carbon nanotubes. J Therm Anal Calorim. 2010;100(3):1063鈥?1. CrossRef
    20. Li L, Li CY, Ni C, Rong L, Hsiao B. Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer. 2007;48:3452鈥?0. polymer.2007.04.030" target="_blank" title="It opens in new window">CrossRef
    21. Zeng X, Yu S, Sun R. Effect of functionalized multiwall carbon nanotubes on the curing kinetics and reaction mechanism of bismaleimide-triazine. J Therm Anal Calorim. 2013;114(1):387鈥?5. CrossRef
    22. Wu D, Sun Y, Zhang M. Kinetics study on melt compounding of carbon nanotube/polypropylene nanocomposites. J Polym Sci Part B. 2009;47:608鈥?8. CrossRef
    23. Lee KJ, Lee J, Hong JY, Jang J. Influence of amorphous polymer nanoparticles on the crystallization behavior of poly(vinyl alcohol) nanocomposites. Macromol Res. 2009;17:476鈥?2. CrossRef
    24. Basuli U, Chaki TK, Setua DK, Chattopadhyay S. A comprehensive assessment on degradation of multi-walled carbon nanotube-reinforced EMA nanocomposites. J Therm Anal Calorim. 2012;108(3):1223鈥?4. CrossRef
    25. Sreekumar TV, Liu T, Min BG, Guo H, Kumar S, Hauge RH, et al. Polyacrylonitrile single-walled carbon nanotube composite fibers. Adv Mater. 2004;16:58鈥?1. CrossRef
    26. Chae HG, Sreekumar TV, Uchida T, Kumar S. A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer. 2005;46:10925鈥?5. polymer.2005.08.092" target="_blank" title="It opens in new window">CrossRef
    27. Min BG, Sreekumar TV, Uchida T, Kumar S. Oxidative stabilization of PAN/SWNT composite fiber. Carbon. 2005;43:599鈥?04. CrossRef
    28. Hu N, Zhou H, Dang G, Rao X, Chen C, Zhang W. Efficient dispersion of multi-walled carbon nanotubes by in situ polymerization. Polym Int. 2007;56:655鈥?. CrossRef
    29. Zhang H, Xu L, Yang F, Geng L. The synthesis of polyacrylonitrile/carbon nanotube microspheres by aqueous deposition polymerization under ultrasonication. Carbon. 2010;48:688鈥?5. CrossRef
    30. Bashir Z. Thermoreversible gelation and plasticization of polyacrylonitrile. Polymer. 1992;33:4304鈥?3. CrossRef
    31. Bell JP, Dumbleton JH. Changes in the structure of wet-spun acrylic fibers during processing. Text Res J. 1971;41:196鈥?03. CrossRef
    32. Meng H, Sui GX, Fang PF, Yang R. Effects of acid- and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6. Polymer. 2008;49:610鈥?0. polymer.2007.12.001" target="_blank" title="It opens in new window">CrossRef
    33. Chen C, Liang B, Lu D, Ogino A, Wang X, Nagatsu M. Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment. Carbon. 2010;48:939鈥?8. CrossRef
    34. Chatterjee T, Lorenzo AT, Krishnamoorti R. Poly(ethylene oxide) crystallization in single walled carbon nanotube based nanocomposites: kinetics and structural consequences. Polymer. 2011;52:4938鈥?6. polymer.2011.08.029" target="_blank" title="It opens in new window">CrossRef
    35. Wu TM, Lin YW, Liao CS. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon. 2005;43:734鈥?0. CrossRef
    36. Kuo MC, Huang JC, Chen M. Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly(ether ether ketone). Mater Chem Phys. 2006;99:258鈥?8. CrossRef
    37. Zhang Q, Li J, Zhao X, Chen D. Preparation and characterization of alkylated carbon nanotube/polyimide nanocomposites. Polym Int. 2009;58(5):557鈥?3. CrossRef
    38. Zhou T, Wang X, Wang T. Cure reaction of multi-walled carbon nanotubes/diglycidyl ether of bisphenol A/2-ethyl-4-methylimidazole (MWCNTs/DGEBA/EMI-2,4) nanocomposites: effect of carboxylic functionalization of MWCNTs. Polym Int. 2009;58:445鈥?2. CrossRef
    39. Kim SH, Ahn SH, Hirai T. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer. 2003;44:5625鈥?4. CrossRef
    40. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702鈥?. CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
The non-isothermal cyclization kinetics of amino-functionalized carbon nanotubes (amino-CNTs)/polyacrylonitrile (PAN) composites was investigated using differential scanning calorimetry (DSC) in nitrogen atmosphere. The amino-CNTs/PAN composites were prepared by in situ polymerization under ultrasonication. The X-ray diffraction analysis showed that the composites had lower degree of crystallization compared with the neat PAN homopolymer. The morphology of composites suggested that the amino-CNTs had homogeneous dispersion in the PAN matrix. The Kissinger method and Crane method were used for describing the non-isothermal cyclization reaction of the neat PAN homopolymer and the amino-CNTs/PAN composites using DSC data with different heating rates. The results showed that the addition of amino-CNTs into the neat PAN homopolymer decreased the initial temperature and the peak temperature for the cyclization reaction. The amino-CNTs/PAN composites had higher activation energy than the neat PAN homopolymer, indicating that the presence of the amino-CNTs hindered the mobility of the PAN chain segments. The n-th order for the amino-CNTs/PAN composites is more close to one than that of the neat PAN homopolymer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700