用户名: 密码: 验证码:
Flexibility is everything: prey capture throughout the seasonal habitat switches in the smooth newt Lissotriton vulgaris
详细信息    查看全文
  • 作者:Egon Heiss (1) (2) (3)
    Peter Aerts (2) (4)
    Sam Van Wassenbergh (2) (5)

    1. Institute of Systematic Zoology and Evolutionary Biology
    ; Friedrich-Schiller-University Jena ; Erbertstr. 1 ; 07743 ; Jena ; Germany
    2. Department of Biology
    ; University of Antwerp ; Universiteitsplein 1 ; 2610 ; Antwerp ; Belgium
    3. Department of Integrative Zoology
    ; University of Vienna ; Althanstr. 14 ; 1090 ; Vienna ; Austria
    4. Department of Movement and Sports Sciences
    ; Ghent University ; Watersportlaan 2 ; 9000 ; Ghent ; Belgium
    5. Evolutionary Morphology of Vertebrates
    ; Ghent University ; K.L. Ledeganckstraat 35 ; 9000 ; Ghent ; Belgium
  • 关键词:Amphibia ; Feeding biology ; Kinematics ; Behavioral plasticity ; Salamanader
  • 刊名:Organisms Diversity & Evolution
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:15
  • 期:1
  • 页码:127-142
  • 全文大小:4,158 KB
  • 参考文献:1. Alexander, R. M. N. (1967). / Functional design in fishes. London: Hutchinson University Library Biological Sciences.
    2. Ashley-Ross, M. A., Hsieh, S. T., Gibb, A. C., & Blob, R. W. (2013). Vertebrate land invasions鈥攑ast, present, future: an introduction to the symposium. / Integrative and Comparative Biology, 53(2), 192鈥?96. CrossRef
    3. Bemis, W. E., & Lauder, G. V. (1986). Morphology and function of the feeding apparatus of the lungfish / Lepidosiren paradoxa (Dipnoi). / Journal of Morphology, 187, 81鈥?08. CrossRef
    4. Bramble, D. M., & Wake, D. B. (1985). Feeding mechanisms of lower tetrapods. In M. Hildebrand, D. M. Bramble, K. F. Liem, & D. B. Wake (Eds.), / Functional vertebrate morphology (pp. 230鈥?61). Cambridge: Harvard University Press.
    5. Carroll, R. L. (2009). / The rise of amphibians: 365 million years of evolution. Baltimore: John Hopkins University Press.
    6. Clack, A. J. (2012). / Gaining ground. The origin and evolution of tetrapods. 2nd ed. J. O. Farlow (Ed.), Boomington & Indianapolis: Indiana University Press.
    7. Deban, S. M. (1997). Modulation of prey-capture behavior in the plethodontid salamander / Ensatina eschscholtzii. Journal of Experimental Biology, 200, 951鈥?64.
    8. Deban, S. M. (2003). Constraint and convergence in the evolution of salamander feeding. In J. P. Gasc, A. Casinos, & V. L. Bels (Eds.), / Vertebrate biomechanics and evolution (pp. 163鈥?80). Oxford: BIOS Scientific Publishers.
    9. Deban, S. M., & Marks, S. B. (2002). Metamorphosis and evolution of feeding behaviour in salamanders of the family Plethodontidae. / Zoological Journal of the Linnean Society London, 134, 375鈥?00. CrossRef
    10. Deban, S. M., & O鈥橰eilly, J. C. (2005). The ontogeny of feeding kinematics in a giant salamander / Cryptobranchus alleganiensis: does current function or phylogenetic relatedness predict the scaling patterns of movement? / Zoology, 108, 155鈥?67. CrossRef
    11. Deban, S. M., & Wake, D. B. (2000). Aquatic feeding in salamanders. In K. Schwenk (Ed.), / Feeding鈥攆orm, function and evolution in tetrapod vertebrates (pp. 65鈥?4). San Diego: Academic.
    12. Deban, S. M., O鈥橰eilly, J. C., & Nishikawa, K. S. (2001). The evolution of the motor control of feeding in amphibians. / American Zoologist, 41, 1280鈥?298. CrossRef
    13. Denny, M. W. (1993). / Air and water. The biology and physics in life鈥檚 media. Princeton: Princeton University Press.
    14. Deno毛l, M. (2004). Terrestrial / versus aquatic foraging in juvenile Alpine newts ( / Triturus alpestris). / Ecoscience, 11(4), 404鈥?09.
    15. Dockx, P., & De Vree, F. (1986). Prey capture and intra-oral food transport in terrestrial salamanders. / Studies in Herpetology, 1986, 521鈥?24.
    16. Duellman, W. E., & Trueb, L. (1994). / Biology of amphibians. Baltimore: Johns Hopkins University Press.
    17. Ferry-Graham, L. A., & Lauder, G. (2001). Aquatic prey capture in ray-finned fishes: a century of progress and new directions. / Journal of Morphology, 248, 99鈥?19. CrossRef
    18. Findeis, E. K., & Bemis, W. E. (1990). Functional morphology of tongue projection in / Taricha torosa (Urodela: Salamandridae). / Journal of the Linnean Society London, 99, 129鈥?57. CrossRef
    19. Gause, G. F. (1932). Experimental studies on the struggle for existence. 1. Mixed population of two species of yeast. / Journal of Experimental Biology, 25(2), 389鈥?02.
    20. Griffiths, R. A. (1997). / Newts and salamanders of Europe. London: Poyser Natural History.
    21. Halliday, T. R. (1974). Sexual behavior of the smooth newt, / Triturus vulgaris (Urodela, Salamandridae). / Journal of Herpetology, 8(4), 277鈥?92. CrossRef
    22. Heiss, E., Aerts, P., & Van Wassenbergh, S. (2013a). Masters of change: seasonal plasticity in the prey-capture behaviour of the Alpine newt / Ichthyosaura alpestris (Salamandridae). / Journal of Experimental Biology, 216, 4426鈥?434. CrossRef
    23. Heiss, E., Natchev, N., Gumpenberger, M., Weissenbacher, A., & Van Wassenbergh, S. (2013b). Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction mechanism. / Journal of the Royal Society Interface, 10(82).
    24. Herrel, A., Van Wassenbergh, S., Aerts, P. (2012). Biomechanical studies of food and diet selection. In / eLS (pp. 1鈥?). Chichester: Wiley.
    25. Ijspeert, A. J., Crespi, A., Ryczko, D., & Cabelguen, J.-M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. / Science, 315, 1416鈥?420. CrossRef
    26. Kane, E. A., & Marshall, C. D. (2009). Comparative feeding kinematics and performance of odontocetes: belugas, Pacific white-sided dolphins and long-finned pilot whales. / Journal of Experimental Biology, 212, 3939鈥?950. CrossRef
    27. Kn眉sel, J., Bicanski, A., Ryczko, D., Cabelguen, J.-M., & Ijspeert, A. J. (2013). A salamander鈥檚 flexible spinal network for locomotion, modeled at two levels of abstraction. / Integrative and Comparative Biology, 53, 269鈥?82. CrossRef
    28. Konow, N., & Sanford, C. P. J. (2008). Is a convergently derived muscle-activity pattern driving novel raking behaviors in teleost fishes? / Journal of Experimental Biology, 211, 989鈥?99. CrossRef
    29. Konow, N., Camp, A. L., & Sanford, C. P. J. (2008). Congruence between muscle activity and kinematics in a convergently derived prey-processing behavior. / Integrative and Comparative Biology, 48, 246鈥?60. CrossRef
    30. Konow, N., Herrel, A., Ross, C. F., Williams, S. H., German, R. Z., Sanford, C. P. J., & Gintof, C. (2011). Evolution of muscle activity patterns driving motions of the jaw and hyoid during chewing in gnathostomes. / Integrative and Comparative Biology, 51, 235鈥?46. CrossRef
    31. Kopeck媒, O., Vojar, J., & Deno毛l, M. (2010). Movements of Alpine newts ( / Mesotriton alpestris) between small aquatic habitats (ruts) during the breeding season. / Amphibia-Reptilia, 31, 109鈥?16. CrossRef
    32. Larsen, J. H., Jr., & Guthrie, D. J. (1975). The feeding system of terrestrial tiger salamanders ( / Ambystoma tigrinum melanostictum Baird). / Journal of Morphology, 147, 137鈥?54. CrossRef
    33. Larsen, J. H., Jr., Beneski, J. B., Jr., & Miller, B. T. (1996). Structure and function of the hyolingual system in / Hynobius and its bearing on the evolution of prey capture in terrestrial salamanders. / Journal of Morphology, 227, 235鈥?48. CrossRef
    34. Lauder, G. V. (1985). Aquatic feeding in lower vertebrates. In M. Hildebrand, D. M. Bramble, K. F. Liem, & D. B. Wake (Eds.), / Functional vertebrate morphology (pp. 210鈥?29). Cambridge: Harvard University Press.
    35. Lauder, G. V., & Reilly, S. M. (1994). Amphibian feeding behavior: comparative biomechanics and evolution. In V. Bels, M. Chardon, & P. Vandwalle (Eds.), / Biomechanics of feeding in vertebrates (pp. 163鈥?95). Berlin: Springer Verlag. CrossRef
    36. Lauder, G. V., & Shaffer, H. B. (1986). Functional design of the feeding mechanism in lower vertebrates: unidirectional and bidirectional flow systems in the tiger salamander. / Zoological Journal of the Linnean Society London, 88, 277鈥?90. CrossRef
    37. Lauder, G. V., & Shaffer,聽H. B. (1988). Ontogeny of functional design in tiger salamanders ( / Ambystoma tigrinum): are motor patterns conserved during major morphological transformations? / Journal of Morphology, 197, 249鈥?68.
    38. Lemell, P., Lemell, C., Snelderwaard, P., Gumpenberger, M., Wochesl盲nder, R., & Weisgram, J. (2002). Feeding patterns of / Chelus fimbriatus (Pleurodira: Chelidae). / Journal of Experimental Biology, 205(10), 1495鈥?506.
    39. Maglia, A. M., & Pyles, R. A. (1995). Modulation of prey-capture behavior in / Plethodon cinereus (Green) (Amphibia: Caudata). / Journal of Experimental Zoology, 272, 167鈥?83. CrossRef
    40. Matthes, E. (1934). Bau und Funktion der Lippens盲ume wasserlebender Urodelen. / Zetschrift f眉r Morphologie und 脰kologie der Tiere, 28, 155鈥?69. CrossRef
    41. Miller, B. T., & Larsen, J. H., Jr. (1990). Comparative kinematics of terrestrial prey capture in salamanders and newts (Amphibia, Urodela, Salamandridae). / Journal of Experimental Zoology, 256(2), 135鈥?53. CrossRef
    42. Muller, M., & Osse, J. W. M. (1984). Hydrodynamics of suction feeding in fish. / Transactions of the Zoological Society of London, 37, 51鈥?35. CrossRef
    43. Natchev, N., Heiss, E., Lemell, P., Stratev, D., & Weisgram, J. (2009). Analysis of prey capture and food transport kinematics in two Asian box turtles, / Cuora amboinensis and / Cuora flavomarginata (Chelonia, Geoemydidae), with emphasis on terrestrial feeding patterns. / Zoology, 112(2), 113鈥?27. CrossRef
    44. Natchev, N., Lemell, P., Heiss, E., Beisser, C., & Weisgram, J. (2010). Aquatic feeding in a terrestrial turtle: a functional-morphological study of the feeding apparatus in the Indochinese box turtle / Cuora galbinifrons (Testudines, Geoemydidae). / Zoomorphology, 129, 111鈥?19. CrossRef
    45. N枚llert, A., & N枚llert, C. (1992). / Die amphibien Europas. Stuttgart: Franckh-Kosmos Verlags-GmbH & Co. Kg.
    46. 脰zeti, N., & Wake, D. B. (1969). Morphology and evolution of tongue and associated structures in salamanders and newts (family Salamandridae). / Copeia, 1, 91鈥?23. CrossRef
    47. Reilly, S. M. (1995). The ontogeny of aquatic feeding behavior in / Salamandra salamandra: stereotypy and isometry in feeding kinematics. / Journal of Experimental Biology, 198, 701鈥?08.
    48. Reilly, S. M. (1996). The metamorphosis of feeding kinematics in / Salamandra salamandra and the evolution of terrestrial feeding behavior. / Journal of Experimental Biology, 199, 1219鈥?227.
    49. Reilly, S. M., & Lauder, G. V. (1989). Kinetics of tongue projection in / Ambystoma tigrinum: Quantitative kinematics, muscle function, and evolutionary hypotheses. / Journal of Morphology, 199, 223鈥?43. CrossRef
    50. Schwenk, K. (2000). An introduction to tetrapod feeding. In K. Schwenk (Ed.), / Feeding- form, function and evolution in tetrapod vertebrates (pp. 21鈥?1). San Diego: Academic.
    51. Shaffer, H. B., & Lauder, G. V. (1985). Patterns of variation in aquatic ambystomatid salamanders: kinematics of the feeding mechanism. / Evolution, 39, 83鈥?2. CrossRef
    52. Sponder, D. L., & Lauder, G. V. (1981). Terrestrial feeding in the mudskipper / Periophthalmus (Pisces: Teleostei): a cineradiographic analysis. / Journal of Zoology, 193, 517鈥?30. CrossRef
    53. Stayton, C. T. (2011). Terrestrial feeding in aquatic turtles: environment-dependent feeding behavior, modulation and the evolution of terrestrial feeding in Emydidae. / Journal of Experimental Biology, 214, 4083鈥?091. CrossRef
    54. Summers, A. P., Darouian, K. F., Richmond, A. M., & Brainerd, E. L. (1998). Kinematics of aquatic and terrestrial prey capture in / Terrapene carolina, with implications for the evolution of feeding in cryptodire turtles. / Journal of Experimental Zoology, 281, 280鈥?87. CrossRef
    55. Thiesmeier, B., & Schulte, U. (2010). / Der Bergmolch鈥攊m Flachland wie im Hochgebirge zu Hause. Bielefeld: Laurenti-Verlag.
    56. Van Damme, J., & Aerts, P. (1997). Kinematics and functional morphology of aquatic feeding in Australian snake-necked turtles (Pleurodira; Chelodina). / Journal of Morphology, 233, 113鈥?25. CrossRef
    57. van Leeuwen, J. L., & Muller, M. (1984). Optimum sucking techniques for predatory fish. / Transactions of the Zoological Society of London, 37, 137鈥?69. CrossRef
    58. Van Wassenbergh, S. (2013). Kinematics of terrestrial capture of prey by the eel-catfish / Channallabes apus. Integrative and Comparative Biology, 53, 258鈥?8. CrossRef
    59. Van Wassenbergh, S., Herrel, A., Adriaens, D., Huysentruyt, F., Devaere, S., & Aerts, P. (2006). A catfish that can strike its prey on land. / Nature, 440, 881. CrossRef
    60. Vogel, S. (1994). / Life in moving fluids. The physical biology of flow (2nd ed.). Princeton: Princeton University Press.
    61. Wainwright, P. C., Metha, R. S., & Higham, T. E. (2008). Stereotypy, flexibility and coordination: key concepts in behavioral functional morphology. / Journal of Experimental Biology, 211, 3523鈥?528. CrossRef
    62. Wake, D. B., & Deban, S. M. (2000). Terrestrial feeding in salamanders. In K. Schwenk (Ed.), / Feeding鈥攆orm, function and evolution in tetrapod vertebrates (pp. 95鈥?16). San Diego: Academic.
    63. Warburg, M. R., & Rosenberg, M. (1997). Ultrastructure of ventral epidermis in the terrestrial and aquatic phases of the newt / Triturus vittatus (Jenyns). / Annals of Anatomy鈥擜natomischer Anzeiger, 179(4), 341鈥?47. CrossRef
    64. Weisrock, D. W., Papenfuss, T. J., Macey, J. R., Litvinchuk, S. N., Polymeni, R., Ugurtas, I. H., Zhao, E., Jowkar, H., & Larson, A. (2006). A molecular assessment of phylogenetic relationships and lineage accumulation rates within the family Salamandridae (Amphibia, Caudata). / Molecular Phylogenetics and Evolution, 41(2), 368鈥?83. CrossRef
    65. Zhang, P., Papenfuss, T. J., Wake, M. H., Qu, L., & Wake, D. B. (2008). Phylogeny and biogeography of the family Salamandridae (Amphibia, Caudata) inferred from complete mitochondrial genomes. / Molecular Phylogenetics and Evolution, 49, 586鈥?97. CrossRef
  • 刊物主题:Biodiversity; Evolutionary Biology; Developmental Biology; Animal Systematics/Taxonomy/Biogeography; Plant Systematics/Taxonomy/Biogeography;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1618-1077
文摘
Transitions between aquatic and terrestrial habitats are significant steps in vertebrate evolution. Due to the different biophysical demands on the whole organism in water and air, such transitions require major changes of many physiological functions, including feeding. Accordingly, the capability to modulate the pre-programmed chain of prey-capture movements might be essential to maintain performance in a new environment. Newts are of special interest in this regard as they show a multiphasic lifestyle where adults change seasonally between an aquatic and a terrestrial stage. For instance, the Alpine newt is capable of using tongue prehension to feed on land only when in the terrestrial stage, but still manages to suction feed if immersed whilst in terrestrial stage. During the aquatic stage, terrestrial feeding always involved grasping prey by the jaws. Here, we show that this seasonal shift in feeding behavior is also present in a species with a shorter terrestrial stage, the smooth newt Lissotriton vulgaris. Behavioral variability increases when animals change from aquatic to terrestrial strikes in the aquatic stage, but prey-capture movements seem to be generally well-coordinated across the feeding modes. Only suction feeding in the terrestrial stage was seldom performed and appeared uncoordinated. Our results indicate that newts exhibit a high degree of seasonal flexibility of the prey-capture behavior. The similarity between movement patterns of suction feeding and terrestrial feeding suggests that only relatively subtle neuromotoric adjustments to the ancestral, suction-feeding motor program are required to successfully feed in the new environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700