用户名: 密码: 验证码:
Exogenous application of ABA mimic 1 (AM1) improves cold stress tolerance in bermudagrass (Cynodon dactylon)
详细信息    查看全文
  • 作者:Zhangmin Cheng ; Rui Jin ; Minjie Cao…
  • 关键词:ABA ; Abiotic stress ; Bermudagrass ; Cold tolerance ; Reactive oxygen species
  • 刊名:Plant Cell, Tissue and Organ Culture
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:125
  • 期:2
  • 页码:231-240
  • 全文大小:751 KB
  • 参考文献:Anderson JA, Taliaferro CM (2002) Freeze tolerance of seed-producing turf bermudagrasses. Crop Sci 42:190–192. doi:10.​2135/​cropsci2002.​1900 CrossRef PubMed
    Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.​1146/​annurev.​arplant.​55.​031903.​141701 CrossRef PubMed
    Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi:10.​1016/​0003-2697(71)90370-8 CrossRef PubMed
    Cao M, Liu X, Zhang Y, Xue X, Zhou XE, Melcher K, Gao P, Wang F, Zeng L, Zhao Y, Zhao Y, Deng P, Zhong D, Zhu JK, Xu HE, Xu Y (2013) An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Res 23:1043–1054. doi:10.​1038/​cr.​2013.​95 CrossRef PubMed PubMedCentral
    Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451. doi:10.​1016/​j.​tplants.​2007.​07.​002 CrossRef PubMed
    Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730. doi:10.​1074/​jbc.​275.​3.​1723 CrossRef PubMed
    Dou T-X, Hu C-H, Sun X-X, Shao X-H, Wu J-H, Ding L-J, Gao J, He W-D, Biswas M-K, Yang Q-S, Yi G-J (2016) MpMYBS3 as a crucial transcription factor of cold signaling confers the cold tolerance of banana. Plant Cell Tissue Organ Cult. doi:10.​1007/​s11240-015-0932-y
    Esmaili S, Salehi H (2012) Effects of temperature and photoperiod on postponing bermudagrass (Cynodon dactylon [L.] Pers.) turf dormancy. J Plant Physiol 169:851–858. doi:10.​1016/​j.​jplph.​2012.​01.​022 CrossRef PubMed
    Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466. doi:10.​4161/​psb.​21949 CrossRef PubMed PubMedCentral
    Hu L, Li H, Pang H, Fu J (2012a) Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J Plant Physiol 169:146–156. doi:10.​1016/​j.​jplph.​2011.​08.​020 CrossRef PubMed
    Hu L, Hu T, Zhang X, Pang H, Fu J (2012b) Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass. J Am Soc Horticult Sci 137:38–46
    Kadlecová Z, Faltus M, Práši I (2000) Relationship between abscisic acid content, dry weight and freezing tolerance in barley cv. Lunet. J Plant Physiol 157:291–297. doi:10.​1016/​S0176-1617(00)80050-4 CrossRef
    Kim TE, Kim SK, Han TJ, Lee JS, Chang SC (2002) ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum). Physiol Plant 115:370–376. doi:10.​1034/​j.​1399-3054.​2002.​1150306.​x CrossRef PubMed
    Kudo K, Oi T, Uno Y (2014) Functional characterization and expression profiling of a DREB2-type gene from lettuce (Lactuca sativa L.). Plant Cell Tissue Organ Cult 116:97–109. doi:10.​1007/​s11240-013-0386-z CrossRef
    Lang V, Mantyla E, Welin B, Sundberg B, Palva ET (1994) Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol 104:1341–1349. doi:10.​1104/​pp.​104.​4.​1341 PubMed PubMedCentral
    Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649. doi:10.​1111/​nph.​12291 CrossRef PubMed
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi:10.​1006/​meth.​2001.​1262 CrossRef PubMed
    Lu S, Su W, Li H, Guo Z (2009) Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiol Biochem 47:132–138. doi:10.​1016/​j.​plaphy.​2008.​10.​006 CrossRef PubMed
    Mantyla E, Lang V, Palva ET (1995) Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiol 107:141–148. doi:10.​1104/​pp.​107.​1.​141 PubMed PubMedCentral
    Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33:453–467. doi:10.​1111/​j.​1365-3040.​2009.​02041.​x CrossRef
    Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Breusegem FV (2011) ROS signaling: the new wave. Trends Plant Sci 16:1360–1385. doi:10.​1016/​j.​tplants.​2011.​03.​007 CrossRef
    Munshaw GC, Ervin EH, Shang C, Askew SD, Zhang X, Lemus RW (2006) Influence of late-season iron, nitrogen, and seaweed extract on fall color retention and cold tolerance of four bermudagrass cultivars. Crop Sci 46:273–283. doi:10.​2135/​cropsci2005.​0078 CrossRef
    Rihan HZ, Al-Issawi M, Al-Shamari M, Woldie WA, Kiernan M, Fuller MP (2014) The effect of molybdenum on the molecular control of cold tolerance in cauliflower (Brassica oleracea var. botrytis) artificial seeds. Plant Cell Tissue Organ Cult 118:215–228. doi:10.​1007/​s11240-014-0475-7 CrossRef
    Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006. doi:10.​1007/​s00299-013-1414-5 CrossRef PubMed
    Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449. doi:10.​1104/​pp.​103.​037614 CrossRef PubMed PubMedCentral
    Shi H, Ye T, Chan Z (2013a) Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses. J Proteome Res 12:4951–4964. doi:10.​1021/​pr400479k CrossRef PubMed
    Shi H, Ye T, Chan Z (2013b) Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol Biochem 71:226–234. doi:10.​1016/​j.​plaphy.​2013.​07.​021 CrossRef PubMed
    Shi H, Ye T, Zhong B, Liu X, Chan Z (2014) Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon (L.) Pers.) by exogenous calcium. J Integr Plant Biol 56:1064–1079. doi:10.​1111/​jipb.​12167 CrossRef PubMed
    Shi H, Jiang C, Ye T, Tan D, Reiter RJ, Zhang H, Liu R, Chan Z (2015a) Comparative physiological, metabolomic and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass (Cynodon dactylon (L). Pers.) by exogenous melatonin. J Exp Bot 66:681–694. doi:10.​1093/​jxb/​eru373 CrossRef PubMed PubMedCentral
    Shi Y, Ding Y, Yang S (2015b) Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol 56:7–15. doi:10.​1093/​pcp/​pcu115 CrossRef PubMed
    Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447. doi:10.​1093/​aob/​mcu239 CrossRef PubMed PubMedCentral
    Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599. doi:10.​1146/​annurev.​arplant.​50.​1.​571 CrossRef
    Veisz O, Galiba G, Sutka J (1996) Effect of abscisic acid on the cold hardiness of wheat seedlings. J Plant Physiol 149:439–443. doi:10.​1016/​S0176-1617(96)80146-5 CrossRef
    Xu ZJ, Nakajima M, Suzuki Y, Yamaguchi I (2002) Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol 129:1285–1295. doi:10.​1104/​pp.​001784 CrossRef PubMed PubMedCentral
    Ye T, Shi H, Wang Y, Chan Z (2015) Contrasting changes caused by drought and submergence stresses in bermudagrass (Cynodon dactylon). Front Plant Sci 6:951. doi:10.​3389/​fpls.​2015.​00951 PubMed PubMedCentral
  • 作者单位:Zhangmin Cheng (1) (2) (3)
    Rui Jin (1) (2) (3)
    Minjie Cao (4)
    Xiaodong Liu (5)
    Zhulong Chan (1) (2)

    1. Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
    2. Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
    3. University of Chinese Academy of Sciences, Beijing, 100039, China
    4. Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
    5. College of Agronomy, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5044
文摘
In this study, small molecules AM1, which is an ABA-mimicking ligand, was used to investigate protective effect on cold tolerance of bermudagrass. Results of phenotypic and physiological changes showed that AM1 was an effective compound to increase bermudagrass cold resistance. In contrast to the control, exogenous AM1 pretreatment significantly improved the cold tolerance of bermudagrass seedlings, including promoted growth, decreased membrane conductivity, and increased survival rate in bermudagrass seedlings under cold condition. Moreover, AM1 pretreatment reduced contents of H2O2, O 2 ·− , ·OH and malondialdehyde, and increased activities of antioxidant enzymes including glutathione peroxidase, glutathione reductase, and superoxide dismutase. Osmolyte like proline accumulated in bermudagrass after AM1 pretreatment, indicating that these substances were also involved in osmotic adjustment in bermudagrass after AM1 treatment. Gene expression analysis indicated that genes encoding antioxidant enzymes and stress inducible proteins were modulated after AM1 pre-treatment. These results showed that exogenous AM1 pretreatment significantly reduced reactive oxygen species level and increased antioxidant enzyme activity to keep the homeostasis of reactive oxygen metabolism, as well as accumulation of proline and modulation of stress inducible genes, resulting in increased cold tolerance on bermudagrass .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700