用户名: 密码: 验证码:
Composite hierachical linear quantile regression
详细信息    查看全文
  • 作者:Yan-liang Chen (1)
    Mao-zai Tian (1)
    Ke-ming Yu (2) (3)
    Jian-xin Pan (4) (5)

    1. Center for Applied Statistics
    ; School of Statistics ; Renmin University of China ; Beijing ; 100872 ; China
    2. School of Business
    ; Shihezi University ; Shihezi ; 832003 ; China
    3. Mathematical Sciences
    ; John Crank 209 ; Brunel University ; Uxbridge ; UB8 3PH ; UK
    4. School of Mathematics
    ; The University of Manchester ; Oxford Road ; Manchester ; M13 9PL ; UK
    5. School of Statistics and Mathematics
    ; Yunnan University of Finance and Economics ; Kunming ; 650221 ; China
  • 关键词:multilevel model ; composite quantile regression ; E ; CQ algorithm ; fixed effects ; random effects ; 62G05 ; 62G20 ; 60G42
  • 刊名:Acta Mathematicae Applicatae Sinica, English Series
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:30
  • 期:1
  • 页码:49-64
  • 全文大小:311 KB
  • 参考文献:1. Dempster, AP, Laird, NM, Rubin, DB (1977) Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39: pp. 11-38
    2. Dempster, AP, Rubin, DB, Tsutakawa, RK (1981) Estimation in covariance components models. Journal of the American Statistical Association 76: pp. 341-353 CrossRef
    3. Elston, RC, Grizzle, JE (1962) Estimation of time response curves and their confidence bands. Biometrics 18: pp. 148-159 CrossRef
    4. Goldstein, H (1995) Multilevel Statistical Models. John Wiley, New York
    5. Kai, B, Li, RZ, Zou, H (2010) Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72: pp. 49-69 CrossRef
    6. Knight, K (1998) Limiting distributions for l1 regression estimators under general conditions. The Annals of Statistics 26: pp. 755-770 CrossRef
    7. Koenker, R (2005) Quantile Regression. Econometric Society Monograph Series. Cambridge University Press, Cambridge CrossRef
    8. Lindley, DV, Smith, AFM (1972) Bayes estimates for the linear model. Journal of the Royal Statistical Society, Series B 34: pp. 1-41
    9. Longford, N (1987) A fast scoring algorithm for maximum likelihood estimation in unbalanced models with nested random effects. Biometrika 74: pp. 817-827 CrossRef
    10. Longford, N (1993) Random Coefficient Models. Clarendon, Oxford
    11. Mason, WM, Wong, GM, Entwistle, B Contextual analysis through the multilevel linear model. In: Leinhardt, S eds. (1983) Sociological Methodology. Jossey C Bass, San Francisco, pp. 72-103
    12. Rosenberg, B (1973) Linear regression with randomly dispersed parameters. Biometrika 60: pp. 61-75 CrossRef
    13. Singer, JD (1998) Using SAS PROC MIXED to fit multilevel models, hierarchical models and individual growth models. Journal of Educational and Behavioral Statistics 23: pp. 323-355 CrossRef
    14. Smith, AFM (1973) A general Bayesian linear model. Journal of the Royal Statistical Society, Series B 35: pp. 67-75
    15. Tian, MZ, Chen, GM (2006) Hierarchical linear regression models for conditional quantiles. Science in China, Series A Mathematics 49: pp. 1800-1815 CrossRef
    16. Tian, MZ, Tang, ML, Chan, PS (2009) Semiparametric quantile modelling of hierarchical data. Acta Mathematica Sinica 25: pp. 597-616 CrossRef
    17. Zou, H, Yuan, M (2008) Composite quantile regression and the oracle model selection theory. Ann. Statist 36: pp. 1108-1126 CrossRef
  • 刊物主题:Applications of Mathematics; Math Applications in Computer Science; Theoretical, Mathematical and Computational Physics;
  • 出版者:Institute of Applied Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
  • ISSN:1618-3932
文摘
Multilevel (hierarchical) modeling is a generalization of linear and generalized linear modeling in which regression coefficients are modeled through a model, whose parameters are also estimated from data. Multilevel model fails to fit well typically by the use of the EM algorithm once one of level error variance (like Cauchy distribution) tends to infinity. This paper proposes a composite multilevel to combine the nested structure of multilevel data and the robustness of the composite quantile regression, which greatly improves the efficiency and precision of the estimation. The new approach, which is based on the Gauss-Seidel iteration and takes a full advantage of the composite quantile regression and multilevel models, still works well when the error variance tends to infinity. We show that even the error distribution is normal, the MSE of the estimation of composite multilevel quantile regression models nearly equals to mean regression. When the error distribution is not normal, our method still enjoys great advantages in terms of estimation efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700