用户名: 密码: 验证码:
Thermodynamic properties of bismuth tellurites Bi<sub class="a-plus-plus">2sub>TeO<sub class="a-plus-plus">5sub>, Bi<sub class="a-plus-plus">2sub>Te<sub class="a-plus-plus">4sub>O<sub class="a-plus-plus">11sub>, Bi<sub class="a-plus-plus">10sub>Te<sub class="a-plus-plus">2sub>O<sub class="a-plus-plus">19sub> and Bi<sub class="a-plu
详细信息    查看全文
文摘
The increasing importance and practical implementations of bismuth tellurites Bi<sub>2sub>TeO<sub>5sub>, Bi<sub>2sub>Te<sub>4sub>O<sub>11sub>, Bi<sub>10sub>Te<sub>2sub>O<sub>19sub> and Bi<sub>16sub>Te<sub>5sub>O<sub>34sub> require sound knowledge on their thermodynamic properties like specific molar heat capacity (C<sub>p,msub>), enthalpy (\(\Delta_{{{\text{T}}^{\prime } }}^{\text{T}} H_{\text{m}}^{0}\)), entropy (\(\Delta_{{{\text{T}}^{\prime } }}^{\text{T}} S_{\text{m}}^{0}\)) and Gibbs energy (\(- \Delta_{{{\text{T}}^{\prime } }}^{\text{T}} G_{\text{m}}^{0}\)). The specific molar heat capacities of the tellurites synthesized were measured experimentally, and their dependence on temperature was determined by the least squares method. The coefficients a, b and c in the equation: $$C_{\text{p}} = a + b \cdot T - c \cdot T^{ - 2}$$were determined. The relative error between the experimentally determined specific molar heat capacity and the one calculated by the equation was found to be in the range 0.41–1.39 %. The coefficient of correlation (R) was close to unity for all the tellurites studied which indicated that the calculation method is adequate. The specific molar heat capacity (C<sub>p,msub>), enthalpy (\(\Delta_{{{\text{T}}^{\prime } }}^{\text{T}} H_{\text{m}}^{0}\)), entropy (\(\Delta_{{{\text{T}}^{\prime } }}^{\text{T}} S_{\text{m}}^{0}\)) and Gibbs energy (\(- \Delta_{{{\text{T}}^{\prime } }}^{\text{T}} G_{\text{m}}^{0}\)) were calculated.KeywordsTellurites of the bismuthThermodynamics propertiesSpecific heat capacityBi<sub>2sub>TeO<sub>5sub>Bi<sub>2sub>Te<sub>4sub>O<sub>11sub>Bi<sub>10sub>Te<sub>2sub>O<sub>19sub>Bi<sub>16sub>Te<sub>5sub>O<sub>34sub>References1.Gospodinov G, Bogdanov B. Heats of formation of some metal tellurites. Acta Thermochim. 1983;71:387–90.CrossRefGoogle Scholar2.Fornaro L. Bi<sub>2sub>TeO<sub>5sub> as a novel material for ionizing radiation detection. Nuclear science symposium and medical imaging conference, Seoul, 27 Oct–2 Nov 2013. p. 1–3.3.Gospodinov G, Bogdanov B. Determination of the heats of formation of some basic metal tellurites and pyrotellurites. Thermochim Acta. 1984;81:349–51.CrossRefGoogle Scholar4.Foldvari I, Peter A, Baraldi, E. Buffagni, Infrared absorption spectra of Tb3+-ions in Bi<sub>2sub>TeO<sub>5sub> single crystal. 11th Europhysical conference on defects in insulating materials. 12–16 July Pecs, 2010;15:1–4.5.Foldvari I, Peter A, Voszka R. Growth and properties of Bi<sub>2sub>TeO<sub>5sub> single crystals. J Cryst Growth. 1990;100:75–7.CrossRefGoogle Scholar6.Schmidt P, Opperman H. Investigations to the ternary system Bi/Te/O, part 1: the phase diagram of the pseudobinary system Bi<sub>2sub>O<sub>3sub>–TeO<sub>2sub>. Z Anorg Allg Chem. 1997;623:174–8.CrossRefGoogle Scholar7.Schmidt P, Hennig C, Opperman H. Investigations on the ternary system Bi/Te/O, part III: determination of thermodynamic data of ternary compounds. Z Naturforsch B Chem Sci. 1999;54:252–60.CrossRefGoogle Scholar8.Zhao G, Tian Y, Fan H, Zhang J, Hu L. Properties and structures of Bi<sub>2sub>O<sub>3sub>–B<sub>2sub>O<sub>3sub>–TeO<sub>2sub> glass. J Mater Sci Technol. 2013;29:209–14.CrossRefGoogle Scholar9.Wu A, Hu J, Qian G, Lu B, Ge G, Tangaud L, Wu X. Bridjman growth of bismuth tellurite crystals. Bull Mater Sci. 2005;28:561–4.CrossRefGoogle Scholar10.Berkaine N. Proprietes optiques non-lineaires de composes metastables du system TeO<sub>2sub>–Bi<sub>2sub>O<sub>3sub>: apports de la chimie quantique. These pour obtenir le grade de docteurde l’universite de limoges, 2009.11.Szaller Z, Poppli L, Lovas G, Dodony I. Study of the formation of Bi<sub>2sub>Te<sub>4sub>O<sub>11sub>. J Solid State Chem. 1996;121:251–6.CrossRefGoogle Scholar12.Umlang V, Jansen A, Tierg P, Winsh S. Theorie und Praktische Anwendung von Complexbildern. Frankfurt am Main: Dechema; 1971.Google Scholar13.Nazarenko J, Ermakov E. Analiticheskaya Khimia Selena i Telura. Moscow: Nauka; 1974.Google Scholar14.Christian G, Dasgupta P, Schug K. Analytical chemistry. New York: Wiley; 2014.Google Scholar15.Giler L. The tables interplanar spacings. Moscow: Nedra; 1966.Google Scholar16.Bojanov E, Vuchkov I. Statistical methods for modeling and optimization of multifactor objects. Sofia: Technics; 1973.Google Scholar17.Vuchkov I, Stoyanov S. Mathematical modeling and optimization of technology objects. Sofia: Technics; 1986.Google Scholar18.Kafarov V. Cybernetics methods of chemistry and chemistry technology. Moscow: Chemistry; 1976.Google Scholar19.Davim J. Design of experiments in production engineering. Switzerland: Springer International Publishing; 2016.CrossRefGoogle Scholar20.Atanasova L, Baikusheva-Dimitrova G, Gospodinov G. Specific heat capacity and thermodynamic properties of CuTeO<sub>3sub> and HgTeO<sub>3sub>. J Therm Anal Calorim. 2014;118:493–7.CrossRefGoogle Scholar21.Koumok V. Methods for assessment of thermodynamic characteristics. Novosibirsk: Science; 1987.Google Scholar22.Norman C. Entropy analyses of four familiar processes. J Chem Educ. 1988;65:700–64.CrossRefGoogle Scholar23.Karapetianc M. Chemical thermodynamics. Moscow: Chemistry; 1975.Google ScholarCopyright information© Akadémiai Kiadó, Budapest, Hungary 2016Authors and AffiliationsLubka Atanasova1Email authorGinka Baikusheva-Dimitrova2Georgy Gospodinov21.Inorganic Chemical Technology DepartmentUniversity “Prof. Dr. Asen Zlatarov”-BurgasBurgasBulgaria2.Inorganic and Analytic Chemistry DepartmentUniversity “Prof. Dr. Asen Zlatarov”-BurgasBurgasBulgaria About this article CrossMark Print ISSN 1388-6150 Online ISSN 1588-2926 Publisher Name Springer Netherlands About this journal Reprints and Permissions Article actions function trackAddToCart() { var buyBoxPixel = new webtrekkV3({ trackDomain: "springergmbh01.webtrekk.net", trackId: "196033507532344", domain: "link.springer.com", contentId: "springer_com.buybox", product: "10.1007/s10973-016-5468-9_Thermodynamic properties of bismut", productStatus: "add", productCategory : { 1 : "ppv" }, customEcommerceParameter : { 9 : "link.springer.com" } }); buyBoxPixel.sendinfo(); } function trackSubscription() { var subscription = new webtrekkV3({ trackDomain: "springergmbh01.webtrekk.net", trackId: "196033507532344", domain: "link.springer.com", contentId: "springer_com.buybox" }); subscription.sendinfo({linkId: "inst. subscription info"}); } window.addEventListener("load", function(event) { var viewPage = new webtrekkV3({ trackDomain: "springergmbh01.webtrekk.net", trackId: "196033507532344", domain: "link.springer.com", contentId: "SL-article", product: "10.1007/s10973-016-5468-9_Thermodynamic properties of bismut", productStatus: "view", productCategory : { 1 : "ppv" }, customEcommerceParameter : { 9 : "link.springer.com" } }); viewPage.sendinfo(); }); Log in to check your access to this article Buy (PDF)EUR 34,95 Unlimited access to full article Instant download (PDF) Price includes local sales tax if applicable Find out about institutional subscriptions Export citation .RIS Papers Reference Manager RefWorks Zotero .ENW EndNote .BIB BibTeX JabRef Mendeley Share article Email Facebook Twitter LinkedIn Cookies We use cookies to improve your experience with our site. More information Accept Over 10 million scientific documents at your fingertips

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700