用户名: 密码: 验证码:
Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes
详细信息    查看全文
  • 作者:Chunfang Gao (7) (9)
    Yun Wang (8)
    Yue Shen (8)
    Dong Yan (7)
    Xi He (7)
    Junbiao Dai (7)
    Qingyu Wu (7)

    7. MOE Key Laboratory of Bioinformatics
    ; School of Life Sciences ; Tsinghua University ; Beijing ; 100084 ; China
    9. Department of Criminal Science and Technology
    ; People鈥檚 Public Security University of China ; Beijing ; 100038 ; China
    8. BGI-Shenzhen
    ; Shenzhen ; 518083 ; China
  • 关键词:Microalgae ; Chlorella protothecoides ; Genome sequence ; Proteomic ; Oil accumulation ; Hexose ; proton symporter ; Transcriptome ; Lipid
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,003 KB
  • 参考文献:1. Halim, R, Danquah, MK, Webley, PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30: pp. 709-732 CrossRef
    2. Scott, SA, Davey, MP, Dennis, JS, Horst, I, Howe, CJ, Lea-Smith, DJ, Smith, AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21: pp. 277-286 CrossRef
    3. Miao, X, Wu, Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97: pp. 841-846 CrossRef
    4. Perez-Garcia, O, Escalante, FM, de-Bashan, LE, Bashan, Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45: pp. 11-36 CrossRef
    5. Xu, H, Miao, X, Wu, Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126: pp. 499-507 CrossRef
    6. Xiong, W, Li, X, Xiang, J, Wu, Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78: pp. 29-36 CrossRef
    7. Xiong, W, Gao, C, Yan, D, Wu, C, Wu, Q (2010) Double CO (2) fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 101: pp. 2287-2293 CrossRef
    8. Lu, Y, Ding, Y, Wu, Q (2011) Simultaneous saccharification of cassava starch and fermentation of algae for biodiesel production. J Appl Phycol 23: pp. 115-121 CrossRef
    9. Gao, C, Zhai, Y, Ding, Y, Wu, Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87: pp. 756-761 CrossRef
    10. Yan, D, Lu, Y, Chen, Y-F, Wu, Q (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 102: pp. 6487-6493 CrossRef
    11. Cheng, Y, Zhou, W, Gao, C, Lan, K, Gao, Y, Wu, Q (2009) Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84: pp. 777-781 CrossRef
    12. Li, R, Fan, W, Tian, G, Zhu, H, He, L, Cai, J, Huang, Q, Cai, Q, Li, B, Bai, Y, Zhang, Z, Zhang, Y, Wang, W, Li, J, Wei, F, Li, H, Jian, M, Li, J, Zhang, Z, Nielsen, R, Li, D, Gu, W, Yang, Z, Xuan, Z, Ryder, OA, Leung, FC, Zhou, Y, Cao, J, Sun, X, Fu, Y (2010) The sequence and de novo assembly of the giant panda genome. Nature 463: pp. 311-317 CrossRef
    13. Parra, G, Bradnam, K, Korf, I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23: pp. 1061-1067 CrossRef
    14. Blanc, G, Duncan, G, Agarkova, I, Borodovsky, M, Gurnon, J, Kuo, A, Lindquist, E, Lucas, S, Pangilinan, J, Polle, J, Salamov, A, Terry, A, Yamada, T, Dunigan, DD, Grigoriev, IV, Claverie, JM, Van Etten, JL (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22: pp. 2943-2955 CrossRef
    15. Blanc, G, Agarkova, I, Grimwood, J, Kuo, A, Brueggeman, A, Dunigan, DD, Gurnon, J, Ladunga, I, Lindquist, E, Lucas, S, Pangilinan, J, Pr枚schold, T, Salamov, A, Schmutz, J, Weeks, D, Yamada, T, Lomsadze, A, Borodovsky, M, Claverie, JM, Grigoriev, IV, Van Etten, JL (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13: pp. R39 CrossRef
    16. Oliver, MJ, Petrov, D, Ackerly, D, Falkowski, P, Schofield, OM (2007) The mode and tempo of genome size evolution in eukaryotes. Genome Res 17: pp. 594-601 CrossRef
    17. Le Bihan, T, Martin, SF, Chirnside, ES, van Ooijen, G, Barrios-Llerena, ME, O鈥橬eill, JS, Shliaha, PV, Kerr, LE, Millar, AJ (2011) Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri. J Proteomics 74: pp. 2060-2070 CrossRef
    18. Palenik, B, Grimwood, J, Aerts, A, Rouze, P, Salamov, A, Putnam, N, Dupont, C, Jorgensen, R, Derelle, E, Rombauts, S (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104: pp. 7705-7710 CrossRef
    19. Tirichine, L, Bowler, C (2011) Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant J 66: pp. 45-57 CrossRef
    20. Kumar, A, Bennetzen, JL (1999) Plant retrotransposons. Annu Rev Genet 33: pp. 479-532 CrossRef
    21. Zheng, ZL (2009) Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav 4: pp. 584-591 CrossRef
    22. Yan, D, Dai, J, Wu, Q (2013) Characterization of an ammonium transporter in the oleaginous alga Chlorella protothecoides. Appl Microbiol Biotechnol 97: pp. 919-928 CrossRef
    23. Morris, SM (2002) Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr 22: pp. 87-105 CrossRef
    24. Allen, AE, Dupont, CL, Obornik, M, Horak, A, Nunes-Nesi, A, McCrow, JP, Zheng, H, Johnson, DA, Hu, H, Fernie, AR, Bowler, C (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473: pp. 203-207 CrossRef
    25. Commichau, FM, Forchhammer, K, Stulke, J (2006) Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol 9: pp. 167-172 CrossRef
    26. Williams, LE, Lemoine, R, Sauer, N (2000) Sugar transporters in higher plants鈥揳 diversity of roles and complex regulation. Trends Plant Sci 5: pp. 283-290 CrossRef
    27. McCurdy, DW, Dibley, S, Cahyanegara, R, Martin, A, Patrick, JW (2010) Functional characterization and RNAi-mediated suppression reveals roles for hexose transporters in sugar accumulation by tomato fruit. Mol Plant 3: pp. 1049-1063 CrossRef
    28. Ozcan, S, Johnston, M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63: pp. 554-569
    29. Sauer, N, Tanner, W (1989) The hexose carrier from Chlorella. cDNA cloning of a eucaryotic H鈥?鈥?cotransporter. FEBS Lett 259: pp. 43-46 CrossRef
    30. Stadler, R, Wolf, K, Hilgarth, C, Tanner, W, Sauer, N (1995) Subcellular localization of the inducible Chlorella HUP1 monosaccharide-H鈥?鈥塻ymporter and cloning of a Co-induced galactose-H鈥?鈥塻ymporter. Plant Physiol 107: pp. 33-41 CrossRef
    31. Will, A, Caspari, T, Tanner, W (1994) Km mutants of the Chlorella monosaccharide/H鈥?鈥塩otransporter randomly generated by PCR. Proc Natl Acad Sci USA 91: pp. 10163-10167 CrossRef
    32. Kato, Y, Ueno, S, Imamura, N (2006) Studies on the nitrogen utilization of endosymbiotic algae isolated from Japanese Paramecium bursaria. Plant Sci 170: pp. 481-486 CrossRef
    33. Doebbe, A, Rupprecht, J, Beckmann, J, Mussgnug, JH, Hallmann, A, Hankamer, B, Kruse, O (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H (2) production. J Biotechnol 131: pp. 27-33 CrossRef
    34. Roesler, K, Shintani, D, Savage, L, Boddupalli, S, Ohlrogge, J (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol 113: pp. 75-81 CrossRef
    35. Chen, M, Thelen, JJ (2010) The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell 22: pp. 77-90 CrossRef
    36. Olah, J, Orosz, F, Keseru, GM, Kovari, Z, Kovacs, J, Hollan, S, Ovadi, J (2002) Triosephosphate isomerase deficiency: a neurodegenerative misfolding disease. Biochem Soc Trans 30: pp. 30-38
    37. Li, R, Zhu, H, Ruan, J, Qian, W, Fang, X, Shi, Z, Li, Y, Li, S, Shan, G, Kristiansen, K, Li, S, Yang, H, Wang, J, Wang, J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20: pp. 265-272 CrossRef
    38. Margulies, M, Egholm, M, Altman, WE, Attiya, S, Bader, JS, Bemben, LA, Berka, J, Braverman, MS, Chen, YJ, Chen, Z, Dewell, SB, Du, L, Fierro, JM, Gomes, XV, Godwin, BC, He, W, Helgesen, S, Ho, CH, Irzyk, GP, Jando, SC, Alenquer, ML, Jarvie, TP, Jirage, KB, Kim, JB, Knight, JR, Lanza, JR, Leamon, JH, Lefkowitz, SM, Lei, M, Li, J (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: pp. 376-380
    39. Phillippy, AM, Schatz, MC, Pop, M (2008) Genome assembly forensics: finding the elusive mis-assembly. Genome Biol 9: pp. R55 CrossRef
    40. Stanke, M, Keller, O, Gunduz, I, Hayes, A, Waack, S, Morgenstern, B (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34: pp. W435-W439 CrossRef
    41. Korf, I (2004) Gene finding in novel genomes. BMC Bioinformatics 5: pp. 59 CrossRef
    42. Majoros, WH, Pertea, M, Salzberg, SL (2004) TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20: pp. 2878-2879 CrossRef
    43. Elsik, CG, Mackey, AJ, Reese, JT, Milshina, NV, Roos, DS, Weinstock, GM (2007) Creating a honey bee consensus gene set. Genome Biol 8: pp. R13 CrossRef
    44. Trapnell, C, Pachter, L, Salzberg, SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: pp. 1105-1111 CrossRef
    45. Trapnell, C, Williams, BA, Pertea, G, Mortazavi, A, Kwan, G, van Baren, MJ, Salzberg, SL, Wold, BJ, Pachter, L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: pp. 511-515 CrossRef
    46. Bairoch, A, Boeckmann, B, Ferro, S, Gasteiger, E (2004) Swiss-Prot: juggling between evolution and stability. Brief Bioinform 5: pp. 39-55 CrossRef
    47. Kanehisa, M, Goto, S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: pp. 27-30 CrossRef
    48. Hunter, S, Jones, P, Mitchell, A, Apweiler, R, Attwood, TK, Bateman, A, Bernard, T, Binns, D, Bork, P, Burge, S, de Castro, E, Coggill, P, Corbett, M, Das, U, Daugherty, L, Duquenne, L, Finn, RD, Fraser, M, Gough, J, Haft, D, Hulo, N, Kahn, D, Kelly, E, Letunic, I, Lonsdale, D, Lopez, R, Madera, M, Maslen, J, McAnulla, C, McDowall, J (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40: pp. D306-D312 CrossRef
    49. Xu, Z, Wang, H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35: pp. W265-W268 CrossRef
    50. Edgar, RC, Myers, EW (2005) PILER: identification and classification of genomic repeats. Bioinformatics 21: pp. i152-i158 CrossRef
    51. Price, AL, Jones, NC, Pevzner, PA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21: pp. i351-i358 CrossRef
    52. Benson, G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27: pp. 573-580 CrossRef
    53. Jurka, J, Kapitonov, VV, Pavlicek, A, Klonowski, P, Kohany, O, Walichiewicz, J (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110: pp. 462-467 CrossRef
    54. Li, H, Coghlan, A, Ruan, J, Coin, LJ, H茅rich茅, JK, Osmotherly, L, Li, R, Liu, T, Zhang, Z, Bolund, L, Wong, GK, Zheng, W, Dehal, P, Wang, J, Durbin, R (2006) TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res 34: pp. D572-D580 CrossRef
    55. Edgar, RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: pp. 1792-1797 CrossRef
    56. Guindon, S, Gascuel, O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: pp. 696-704 CrossRef
    57. Kent, WJ, Baertsch, R, Hinrichs, A, Miller, W, Haussler, D (2003) Evolution鈥檚 cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A 100: pp. 11484-11489 CrossRef
    58. Mortazavi, A, Williams, BA, McCue, K, Schaeffer, L, Wold, B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: pp. 621-628 CrossRef
    59. Audic, S, Claverie, JM (1997) The significance of digital gene expression profiles. Genome Res 7: pp. 986-995
    60. Benjamini, Y, Hochberg, Y (1995) Controlling the False Discovery Rate: a Prctical and Powerful Approach to Multiple Testing. J R Stat Soc 57: pp. 12
    61. Ashburner, M, Ball, CA, Blake, JA, Botstein, D, Butler, H, Cherry, JM, Davis, AP, Dolinski, K, Dwight, SS, Eppig, JT, Harris, MA, Hill, DP, Issel-Tarver, L, Kasarskis, A, Lewis, S, Matese, JC, Richardson, JE, Ringwald, M, Rubin, GM, Sherlock, G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: pp. 25-29
    62. Zhang, N, Zhang, Z, Feng, S, Wang, Q, Malamud, D, Deng, H (2013) Quantitative analysis of differentially expressed saliva proteins in human immunodeficiency virus type 1 (HIV-1) infected individuals. Anal Chim Acta 774: pp. 61-66 CrossRef
    63. Callister, SJ, Barry, RC, Adkins, JN, Johnson, ET, Qian, WJ, Webb-Robertson, BJ, Smith, RD, Lipton, MS (2006) Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J Proteome Res 5: pp. 277-286 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Microalgae-derived biodiesel is a promising substitute for conventional fossil fuels. In particular, the green alga Chlorella protothecoides sp. 0710 is regarded as one of the best candidates for commercial manufacture of microalgae-derived biofuel. This is due not only to its ability to live autotrophically through photosynthesis, but also to its capacity to produce a large amount of biomass and lipid through fermentation of glucose. However, until the present study, neither its genome sequence nor the platform required for molecular manipulations were available. Results We generated a draft genome for C. protothecoides, and compared its genome size and gene content with that of Chlorella variabilis NC64A and Coccomyxa subellipsoidea C-169. This comparison revealed that C. protothecoides has a reduced genome size of 22.9 Mbp, about half that of its close relatives. The C. protothecoides genome encodes a smaller number of genes, fewer multi-copy genes, fewer unique genes, and fewer genome rearrangements compared with its close relatives. In addition, three Chlorella-specific hexose-proton symporter (HUP)-like genes were identified that enable the consumption of glucose and, consequently, heterotrophic growth. Furthermore, through comparative transcriptomic and proteomic studies, we generated a global perspective regarding the changes in metabolic pathways under autotrophic and heterotrophic growth conditions. Under heterotrophic conditions, enzymes involved in photosynthesis and CO2 fixation were almost completely degraded, either as mRNAs or as proteins. Meanwhile, the cells were not only capable of quickly assimilating glucose but also showed accelerated glucose catabolism through the upregulation of glycolysis and the tricarboxylic acid (TCA) cycle. Moreover, the rapid synthesis of pyruvate, upregulation of most enzymes involved in fatty acid synthesis, and downregulation of enzymes involved in fatty acid degradation favor the synthesis of fatty acids within the cell. Conclusions Despite similarities to other Chlorella, C. protothecoides has a smaller genome than its close relatives. Genes involved in glucose utilization were identified, and these genes explained its ability to grow heterotrophically. Transcriptomic and proteomic results provided insight into its extraordinary ability to accumulate large amounts of lipid. The C. protothecoides draft genome will promote the use of this species as a research model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700