用户名: 密码: 验证码:
Atlantic Salmon (Salmo salar L.) Gastrointestinal Microbial Community Dynamics in Relation to Digesta Properties and Diet
详细信息    查看全文
  • 作者:Kamarul Zaman Zarkasi ; Richard S. Taylor ; Guy C. J. Abell…
  • 关键词:Atlantic salmon ; Intestinal bacteria ; Diet formulations ; 16S rRNA gene ; Digesta properties
  • 刊名:Microbial Ecology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:71
  • 期:3
  • 页码:589-603
  • 全文大小:1,637 KB
  • 参考文献:1.ABARES (2013) Australian Fisheries and Aquaculture Statistics 2012 (ABARES): pp. 119. Australian Bureau of Agricultural and Resource Economics, Canberra, Australia
    2.Green TJ, Smullen R, Barnes AC (2013) Dietary soybean protein concentrate-induced intestinal disorder in marine farmed Atlantic salmon, Salmo salar is associated with alterations in gut microbiota. Vet Microbiol 166:286–292CrossRef PubMed
    3.Tacon AG, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285:146–158CrossRef
    4.Hardy RW (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res 41:770–776CrossRef
    5.Barton BA, Schreck CB, Fowler LG (1988) Fasting and diet content affect stress-induced changes in plasma glucose and cortisol in juvenile chinook salmon. Prog Fish Cult 50:16–22CrossRef
    6.Gomez D, Sunyer JO, Salinas I (2013) The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immun 35:1729–1739CrossRef
    7.Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight R, Kilham SS, Russell JA (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol 21:3363–3378CrossRef PubMed
    8.De Cruz P, Prideaux L, Wagner J, Ng SC, McSweeney C, Kirkwood C, Morrison M, Kamm MA (2012) Characterization of the gastrointestinal microbiota in health and inflammatory bowel disease. Inflamm Bowel Dis 18:372–390CrossRef PubMed
    9.Kostic AD, Howitt MR, Garrett WS (2013) Exploring host-microbiota interactions in animal models and humans. Genes Dev 27:701–718CrossRef PubMed PubMedCentral
    10.Hermes G, Zoetendal E, Smidt H (2014) Molecular ecological tools to decipher the role of our microbial mass in obesity. Benef Microbes 5:1–21CrossRef
    11.Joyce SA, Gahan CG (2014) The gut microbiota and the metabolic health of the host. Curr Opin Gastroen 30:120–127CrossRef
    12.Clements KD, Angert ER, Montgomery WL, Choat JH (2014) Intestinal microbiota in fishes: what’s known and what’s not. Mol Ecol 23:1891–1898CrossRef PubMed
    13.Ray A, Ghosh K, Ringø E (2012) Enzyme‐producing bacteria isolated from fish gut: a review. Aquacult Nutr 18:465–492CrossRef
    14.Muñoz-Atienza E, Gómez-Sala B, Araújo C, Campanero C, Del Campo R, Hernández PE, Herranz C, Cintas LM (2013) Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol 13:15CrossRef PubMed PubMedCentral
    15.Geraylou Z, Souffreau C, Rurangwa E, De Meester L, Courtin CM, Delcour JA, Buyse J, Ollevier F (2013) Effects of dietary arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance, non-specific immunity and gut microbiota of juvenile Siberian sturgeon (Acipenser baerii). Fish Shellfish Immun 35:766–775CrossRef
    16.Pérez T, Balcázar J, Ruiz-Zarzuela I, Halaihel N, Vendrell D, De Blas I, Múzquiz J (2010) Host-microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol 3:355–360CrossRef PubMed
    17.Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MÁ, Esteban MÁ (2013) Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish Shellfish Immun 34:1063–1070CrossRef
    18.Flint HJ, Duncan SH, Scott KP, Louis P (2014) Links between diet, gut microbiota composition and gut metabolism. P Nutr Soc. doi: 10.​1017/​S002966511400146​3
    19.Abid A, Davies S, Waines P, Emery M, Castex M, Gioacchini G, Carnevali O, Bickerdike R, Romero J, Merrifield D (2013) Dietary synbiotic application modulates Atlantic salmon (Salmo salar) intestinal microbial communities and intestinal immunity. Fish Shellfish Immun 35:1948–1956CrossRef
    20.Balcázar JL, Vendrell D, de Blas I, Ruiz-Zarzuela I, Muzquiz JL, Girones O (2008) Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture 278:188–191CrossRef
    21.Burr G, Gatlin D (2005) Microbial ecology of the gastrointestinal tract of fish and the potential application of prebiotics and probiotics in finfish aquaculture. J World Aquacult Soc 36:425–236CrossRef
    22.Burrells C, Wiliams PD, Southgate PJ, Wadsworth SL (2001) Dietary nucleotides: a novel supplement in fish feeds 2. Effects on vaccination, salt water transfer, growth rates and physiology of Atlantic salmon (Salmo salar L.). Aquaculture 199:171–184CrossRef
    23.Moldal T, Løkka G, Wiik-Nielsen J, Austbø L, Torstensen BE, Rosenlund G, Dale OB, Kaldhusdal M, Koppang EO (2014) Substitution of dietary fish oil with plant oils is associated with shortened mid intestinal folds in Atlantic salmon (Salmo salar). BMC Vet Res 10:60CrossRef PubMed PubMedCentral
    24.Ringø E, Løvmo L, Kristiansen M, Bakken Y, Salinas I, Myklebust R, Olsen RE, Mayhew TM (2009) Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review. Aquac Res 41:451–467CrossRef
    25.Romarheim OH, Øverland M, Mydland LT, Skrede A, Landsverk T (2011) Bacteria grown on natural gas prevent soybean meal-induced enteritis in Atlantic salmon. J Nutr 141:124–130CrossRef PubMed
    26.Askarian F, Zhou Z, Olsen RE, Sperstad S, Ringø E (2012) Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterisation by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture 326:1–8CrossRef
    27.Korsnes K, Nicolaisen O, Skår CK, Nerland AH, Bergh Ø (2006) Bacteria in the gut of juvenile cod Gadus morhua fed live feed enriched with four different commercial diets. ICES J Mar Sci: J Conseil 263:296–301CrossRef
    28.Kotzamanis Y, Gisbert E, Gatesoupe F, Zambonino Infante J, Cahu C (2007) Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comp Biochem Physiol 147:205–214CrossRef
    29.Landeira-Dabarca A, Sieiro C, Alvarez M (2013) Change in food ingestion induces rapid shifts in the diversity of microbiota associated with cutaneous mucus of Atlantic salmon Salmo salar. J Fish Biol 82:893–906CrossRef PubMed
    30.Ringø E, Olsen R (1999) The effect of diet on aerobic bacterial flora associated with intestine of Arctic charr (Salvelinus alpinus L.). J Appl Microbiol 86:22–28CrossRef PubMed
    31.Ringø E, Sperstad S, Myklebust R, Mayhew TM, Olsen RE (2006) The effect of dietary inulin on aerobic bacteria associated with hindgut of Arctic charr (Salvelinus alpinus L.). Aquac Res 37:891–897CrossRef
    32.Ringø E, Sperstad S, Myklebust R, Refstie S, Krogdahl Å (2006) Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): the effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture 261:829–841CrossRef
    33.Bakke-McKellep AM, Penn MH, Salas PM, Refstie S, Sperstad S, Landsverk T, Ringo E, Krogdahl A (2007) Effects of dietary soya bean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). Brit J Nutr 97:699–713CrossRef PubMed
    34.Bakke-McKellep A, Refstie S, Cyrino J, Bureau D, Kapoor B (2008) Alternative protein sources and digestive function alterations in teleost fishes. In: Cyrino JEP, Roubach R, Bureau D, Kapoor BG (eds) Feeding and digestive functions of fishes. Science Publishers, Enfield, NH, USA, pp 440–472
    35.Krogdahl Å, Penn M, Thorsen J, Refstie S, Bakke AM (2010) Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac Res 41:333–344CrossRef
    36.Sahlmann C, Sutherland BJ, Kortner TM, Koop BF, Krogdahl Å, Bakke AM (2013) Early response of gene expression in the distal intestine of Atlantic salmon (Salmo salar L.) during the development of soybean meal induced enteritis. Fish Shellfish Immun 34:599–609CrossRef
    37.Refstie S, Glencross B, Landsverk T, Sørensen M, Lilleeng E, Hawkins W, Krogdahl Å (2006) Digestive function and intestinal integrity in Atlantic salmon (Salmo salar) fed kernel meals and protein concentrates made from yellow or narrow-leafed lupins. Aquaculture 261:1382–1395CrossRef
    38.Hartviksen M, Bakke AM, Vecino JG, Ringø E, Krogdahl Å (2014) Evaluation of the effect of commercially available plant and animal protein sources in diets for Atlantic salmon (Salmo salar L.): digestive and metabolic investigations. Fish Physiol Biochem 40:1621–1637CrossRef PubMed
    39.Turner JW Jr, Nemeth R, Rogers C (2003) Measurement of fecal glucocorticoids in parrotfishes to assess stress. Gen Comp Endocr 133:341–352CrossRef PubMed
    40.Niklasson L, Sundh H, Olsen RE, Jutfelt F, Skjødt K, Nilsen TO, Sundell KS (2014) Effects of cortisol on the intestinal mucosal immune response during cohabitant challenge with IPNV in Atlantic salmon (Salmo salar). PLoS One 9, e94288CrossRef PubMed PubMedCentral
    41.Taylor RS, Muller WJ, Cook MT, Kube PD, Elliott NG (2009) Gill observations in Atlantic salmon (Salmo salar, L.) during repeated amoebic gill disease (AGD) field exposure and survival challenge. Aquaculture 290:1–8CrossRef
    42.Holben W, Williams P, Saarinen M, Särkilahti L, Apajalahti J (2002) Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microb Ecol 44:175–185CrossRef PubMed
    43.Hovda MB, Lunestad BT, Fontanillas R, Rosnes JT (2007) Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.). Aquaculture 272:581–588CrossRef
    44.Soergel DA, Dey N, Knight R, Brenner SE (2012) Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J 6:1440–1444CrossRef PubMed PubMedCentral
    45.Dowd S, Callaway T, Wolcott R, Sun Y, McKeehan T, Hagevoort R, Edrington T (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125CrossRef PubMed PubMedCentral
    46.Lanzén A, Jørgensen SL, Bengtsson MM, Jonassen I, Øvreås L, Urich T (2011) Exploring the composition and diversity of microbial communities at the Jan Mayen hydrothermal vent field using RNA and DNA. FEMS Microbiol Ecol 77:577–589CrossRef PubMed
    47.Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRef PubMed
    48.Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRef PubMed PubMedCentral
    49.Anderson MJ, Connell SD, Gillanders BM, Diebel CE, Blom WM, Saunders JE, Landers TJ (2005) Relationships between taxonomic resolution and spatial scales of multivariate variation. J Anim Ecol 74:636–646CrossRef
    50.Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525CrossRef
    51.Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791CrossRef PubMed
    52.Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253CrossRef PubMed
    53.Spillman CM, Hobday AJ (2014) Dynamical seasonal ocean forecasts to aid salmon farm management in a climate hotspot. Climate Risk Management 1:25–38CrossRef
    54.Hunt S, Simpson T, Wright R (1982) Seasonal changes in the levels of 11‐oxotestosterone and testosterone in the serum of male salmon, Salmo salar L., and their relationship to growth and maturation cycle. J Fish Biol 20:105–119CrossRef
    55.Zarkasi KZ, Abell GC, Taylor RS, Neuman C, Hatje E, Tamplin ML, Katouli M, Bowman JP (2014) Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmo salar L.) within a commercial mariculture system. J Appl Microbiol 117:18–27CrossRef PubMed
    56.Ratkowsky DA (2008) Tests for dispersion among macrofungal species assemblages. Australas Mycol 27:66–73
    57.Krieg N (2011) Family IV. Porphyromonadaceae fam. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB (editors), Bergey’s Manual of Systematic Bacteriology, second edition, vol. 4 (The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes). New York: Springer, 61-65
    58.Dobson A, Cotter PD, Ross RP, Hill C (2012) Bacteriocin production: a probiotic trait? Appl Environ Microb 78:1–6CrossRef
    59.Beaz-Hidalgo R, Doce A, Balboa S, Barja JL, Romalde JL (2010) Aliivibrio finisterrensis sp. nov., isolated from Manila clam, Ruditapes philippinarum and emended description of the genus Aliivibrio. Int J Syst Evol Micr 60:223–228CrossRef
    60.Grammes F, Reveco FE, Romarheim OH, Landsverk T, Mydland LT, Øverland M (2013) Candida utilis and Chlorella vulgaris counteract intestinal inflammation in Atlantic salmon (Salmo salar L.). PLoS One 8, e83213CrossRef PubMed PubMedCentral
    61.Tacchi L, Bickerdike R, Douglas A, Secombes CJ, Martin SA (2011) Transcriptomic responses to functional feeds in Atlantic salmon (Salmo salar). Fish Shellfish Immun 31:704–715CrossRef
    62.Hamady M, Knight R (2009) Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 19:1141–1152CrossRef PubMed PubMedCentral
    63.Star B, Haverkamp TH, Jentoft S, Jakobsen KS (2013) Next generation sequencing shows high variation of the intestinal microbial species composition in Atlantic cod caught at a single location. BMC Microbiol 13:248CrossRef PubMed PubMedCentral
    64.Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546CrossRef PubMed
    65.Ratkowsky D, Lowry R, McMeekin T, Stokes A, Chandler R (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226PubMed PubMedCentral
    66.Soto W, Gutierrez J, Remmenga M, Nishiguchi M (2009) Salinity and temperature effects on physiological responses of Vibrio fischeri from diverse ecological niches. Microb Ecol 57:140–150CrossRef PubMed PubMedCentral
    67.Chen WL, Oliver JD, Wong HC (2010) Adaptation of Vibrio vulnificus and an rpoS mutant to bile salts. Int J Food Microbiol 140:232–238CrossRef PubMed
    68.Neuman C, Hatje E, Zarkasi KZ, Smullen R, Bowman JP, Katouli M (2014) The effect of diet and environmental temperature on the faecal microbiota of farmed Tasmanian Atlantic Salmon (Salmo salar L.). Aquac Res. doi: 10.​1111/​are.​12522
    69.Hatje E, Neuman C, Stevenson H, Bowman JP, Katouli M (2014) Population dynamics of Vibrio and Pseudomonas species isolated from farmed Tasmanian Atlantic salmon (Salmo salar L.): a seasonal study. Microb Ecol 68:679–687CrossRef PubMed
    70.Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRef PubMed PubMedCentral
    71.Dantas G, Sommer MO, Degnan PH, Goodman AL (2013) Experimental approaches for defining functional roles of microbes in the human gut. Annu Rev Microbiol 67:459–475CrossRef PubMed PubMedCentral
    72.Olsvik PA, Vikeså V, Lie KK, Hevrøy EM (2013) Transcriptional responses to temperature and low oxygen stress in Atlantic salmon studied with next-generation sequencing technology. BMC Genomics 14:817CrossRef PubMed PubMedCentral
    73.Pédron T, Mulet C, Dauga C, Frangeul L, Chervaux C, Grompone G, Sansonetti PJ (2012) A crypt-specific core microbiota resides in the mouse colon. MBio 3:e00116–00112CrossRef PubMed PubMedCentral
    74.Ivanov II, Littman DR (2010) Segmented filamentous bacteria take the stage. Mucosal Immunol 3:209–212CrossRef PubMed PubMedCentral
    75.Fuhrman JA, Cram JA, Needham DM (2015) Marine microbial community dynamics and their ecological interpretation. Nat Rev Immunol 38:1690–1711
    76.He M, Tian G, Semenov AM, van Bruggen AH (2012) Short-term fluctuations of sugar beet damping-off by Pythium ultimum in relation to changes in bacterial communities after organic amendments to two soils. Phytopathology 102:413–420CrossRef PubMed
    77.Van Diepeningen AD, De Vos OJ, Zelenev VV, Semenov AM, Van Bruggen AH (2005) DGGE fragments oscillate with or counter to fluctuations in cultivable bacteria along wheat roots. Microb Ecol 50:506–517CrossRef PubMed
    78.Zelenev V, Van Bruggen A, Semenov A (2005) Short-term wavelike dynamics of bacterial populations in response to nutrient input from fresh plant residues. Microb Ecol 49:83–93CrossRef PubMed
    79.Zelenev V, Van Bruggen A, Leffelaar P, Bloem J, Semenov A (2006) Oscillating dynamics of bacterial populations and their predators in response to fresh organic matter added to soil: the simulation model ‘BACWAVE-WEB’. Soil Biol Biochem 38:1690–1711CrossRef
  • 作者单位:Kamarul Zaman Zarkasi (1) (2)
    Richard S. Taylor (3)
    Guy C. J. Abell (3)
    Mark L. Tamplin (2)
    Brett D. Glencross (4)
    John P. Bowman (2)

    1. School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
    2. Tasmanian Institute of Agriculture, Food Safety Centre, University of Tasmania, Hobart, Tasmania, Australia
    3. CSIRO Agriculture, Hobart, Tasmania, Australia
    4. University of Stirling, Institute of Aquaculture, Stirling, Scotland, UK
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Ecology
    Geoecology and Natural Processes
    Nature Conservation
  • 出版者:Springer New York
  • ISSN:1432-184X
文摘
To better understand salmon GI tract microbial community dynamics in relation to diet, a feeding trial was performed utilising diets with different proportions of fish meal, protein, lipid and energy levels. Salmon gut dysfunction has been associated with the occurrence of casts, or an empty hind gut. A categorical scoring system describing expressed digesta consistency was evaluated in relation to GI tract community structure. Faster growing fish generally had lower faecal scores while the diet cohorts showed minor differences in faecal score though the overall lowest scores were observed with a low protein, low energy diet. The GI tract bacterial communities were highly dynamic over time with the low protein, low energy diet associated with the most divergent community structure. This included transiently increased abundance of anaerobic (Bacteroidia and Clostridia) during January and February, and facultatively anaerobic (lactic acid bacteria) taxa from February onwards. The digesta had enriched populations of these groups in relation to faecal cast samples. The majority of samples (60–86 %) across all diet cohorts were eventually dominated by the genus Aliivibrio. The results suggest that an interaction between time of sampling and diet is most strongly related to community structure. Digesta categorization revealed microbes involved with metabolism of diet components change progressively over time and could be a useful system to assess feeding responses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700