用户名: 密码: 验证码:
Potential functions of microRNAs in starch metabolism and development revealed by miRNA transcriptome profiling of cassava cultivars and their wild progenitor
详细信息    查看全文
  • 作者:Xin Chen (1) (2)
    Jing Xia (3) (4)
    Zhiqiang Xia (1) (2)
    Hefang Zhang (1) (2)
    Changying Zeng (1) (2)
    Cheng Lu (1) (2)
    Weixiong Zhang (3) (4)
    Wenquan Wang (1) (2)

    1. The Institute of Tropical Bioscience and Biotechnology (ITBB)
    ; Chinese Academy of Tropical Agricultural Sciences (CATAS) ; Haikou ; 571101 ; PR China
    2. Key Laboratory of Biology and Genetic Resources of Tropical Crops
    ; Ministry of Agriculture ; Haikou ; 571101 ; PR China
    3. Institute for Systems Biology
    ; Jianghan University ; Wuhan ; 430056 ; China
    4. Department of Computer Science and Engineering
    ; Washington University in St. Louis ; St. Louis ; Missouri ; MO ; 63130 ; USA
  • 关键词:MicroRNA ; Target Gene ; Wild Progenitor ; Cassava (Manihot esculenta Crantz)
  • 刊名:BMC Plant Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:15
  • 期:1
  • 全文大小:2,120 KB
  • 参考文献:1. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T: Identification of novel genes coding for small expressed RNAs. / Science 2001, 294(5543):853鈥?58. CrossRef
    2. Lau NC, Lim LP, Weinstein EG, Bartel DP: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans . / Science 2001, 294(5543):858鈥?62. CrossRef
    3. Chen X: MicroRNA biogenesis and function in plants. / FEBS Lett 2005, 579(26):5923鈥?931. CrossRef
    4. Carla S, Edgardo GB, Silvana VS, Javier FP: / Role of MicroRNA miR319 in Plant Development, in R. Sunkar (ed.), MicroRNAs in Plant Development and Stress Responses, Signaling and Communication in Plants 15, doi:10.1007/978-3-642-27384-1, Springer-Verlag Berlin Heidelberg 2012.
    5. Ozhuner E, Eldem V, Ipek A, Okay S, Sakcali S, Zhang B, Boke H, Unver T: Boron stress responsive miRNAs and their targets in barley. / PLoS One 2013, 8(3):e59543. CrossRef
    6. Peng T, Sun H, Du Y, Zhang J, Li J, Liu Y, Zhao Y, Zhao Q: Characterization and expression patterns of miRNAs involved in rice grain filling. / PLoS One 2013, 8(1):e54148. CrossRef
    7. Chen XB, Zhang ZL, Liu DM, Zhang K, Li AL, Mao L: SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. / J Integr Plant Biol 2010, 52(11):946鈥?51. CrossRef
    8. Park W, Li J, Song R, Messing J, Chen X: CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in miRNA metabolism in Arabidopsis thaliana . / Curr Biol 2002, 12:1484鈥?495. CrossRef
    9. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D: Control of leaf morphogenesis by miRNAs. / Nature 2003, 425(6955):257鈥?63. CrossRef
    10. Aukerman MJ, Sakai H: Regulation of flowering time and floral organ identity by a MiRNA and its APETALA2-like target genes. / Plant Cell 2003, 15(11):2730鈥?741. CrossRef
    11. Sunkar R, Zhu JK: Novel and stress-regulated miRNAs and other small RNAs from Arabidopsis . / Plant Cell 2004, 16(8):2001鈥?019. CrossRef
    12. Sun G: MicroRNAs and their diverse functions in plants. / Plant Mol Biol 2012, 80(1):17鈥?6. CrossRef
    13. Reinhart BJ, Weinstein EG, Jones-Rhoades MW, Bartel B, Bartel DP: MiRNAs in plants. / Genes Dev 2002, 16:1616鈥?626. CrossRef
    14. Sunkar R, Jagadeeswaran G: In silico identification of conserved miRNAs in large number of diverse plant species. / BMC Plant Biol 2008, 8:37. CrossRef
    15. Guo W, Wu G, Yan F, Lu Y, Zheng H, Lin L, Chen H, Chen J: Identification of novel Oryza sativa miRNAs in deep sequencing-based small RNA libraries of rice infected with rice stripe virus. / PLoS One 2012, 7(10):e46443. CrossRef
    16. Tetlow IJ, Morell MK, Emes MJ: Recent developments in understanding the regulation of starch metabolism in higher plants. / J Exp Bot 2004, 55(406):2131鈥?145. CrossRef
    17. Xie F, Frazier TP, Zhang B: Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass ( Panicum virgatum ). / Planta 2010, 232(2):417鈥?34. CrossRef
    18. Xie F, Frazier TP, Zhang B: Identification, characterization and expression analysis of MicroRNAs and their targets in the potato ( Solanum tuberosum ). / Gene 2011, 473(1):8鈥?2. CrossRef
    19. Patanun O, Lertpanyasampatha M, Sojikul P, Viboonjun U, Narangajavana J: Computational identification of miRNAs and their targets in cassava ( Manihot esculenta Crantz). / Mol Biotechnol 2013, 53(3):257鈥?69. CrossRef
    20. P茅rez-Quintero 脕L, Quintero A, Urrego O, Vanegas P, L贸pez C: Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis. / BMC Plant Biol 2012, 12:29. CrossRef
    21. Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar DS, Rounsley S: The cassava genome: current progress, future directions. / Trop Plant Biol 2012, 5(1):88鈥?4. CrossRef
    22. Zeng CY, Wang WQ, Zheng Y, Chen X, Bo WP, Song S, Zhang WX, Peng M: Conservation and divergence of miRNAs and their functions in Euphorbiaceous plants. / Nucle Acid Res 2010, 38:981鈥?95. CrossRef
    23. Amiteye S, Corra JM, Sharbe TF: Overview of the potential of microRNAs and their target gene detection for cassava ( Manihot esculenta ) improvement. / Afr J Biotech 2011, 10(14):2562鈥?573.
    24. Xia J, Zeng CY, Chen Z, Zhang K, Chen X, Zhou YF, Song S, Lu C, Yang RJ, Yang Z, Zhou J, Peng H, Wang WQ, Peng M, Zhang WX: Endogenous small-noncoding RNAs and their roles in chilling response and stress acclimation in Cassava. / BMC Genomics 2014, 15:634. CrossRef
    25. Karlova R, van Haarst JC, Maliepaard C, van de Geest H, Bovy AG, Lammers M, Angenent GC, de Maagd RA: Identification of miRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. / J Exp Bot 2013, 64(7):1863鈥?878. CrossRef
    26. Carnavale Bottino M, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L, Hemerly AS, Ferreira PC: High-throughput sequencing of small RNA transcriptome reveals salt stress regulated miRNAs in sugarcane. / PLoS One 2013, 8(3):e59423. CrossRef
    27. Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington JC, Weigel D: Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. / Dev Cell 2007, 13(1):115鈥?25. CrossRef
    28. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Arabidopsis At MYC2 (bHLH) and At MYB2 (MYB) function as transcriptional activators in abscisic acid signaling. / Plant Cell 2003, 15(1):63鈥?8. CrossRef
    29. Reyes JL, Chua NH: ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. / Plant J 2007, 49(4):592鈥?06. CrossRef
    30. Chen J, Huang B, Li Y, Du H, Gu Y, Liu H, Zhang J, Huang Y: Synergistic influence of sucrose and abscisic acid on the genes involved in starch synthesis in maize endosperm. / Carbohydr Res 2011, 346(13):1684鈥?691. CrossRef
    31. Zhu GH, Ye NH, Yang JC, Peng XX, Zhang JH: Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. / J Exp Bot 2011, 62(11):3907鈥?916. CrossRef
    32. Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, Rodriguez R, Sorin C, Palatnik J, Hartmann C, Crespi M, Lelandais-Bri猫re C: MiR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula . / Plant J 2013, 74(6):920鈥?34. CrossRef
    33. Hewezi T, Maier TR, Nettleton D, Baum TJ: The Arabidopsis miRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. / Plant Physiol 2012, 159(1):321鈥?35. CrossRef
    34. Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK: The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post-transcriptionally to promote drought resistance. / Plant Cell 2008, 20(8):2238鈥?251. CrossRef
    35. Ni Z, Hu Z, Jiang Q, Zhang H: GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. / Plant Mol Biol 2013, 82(1鈥?):113鈥?29. CrossRef
    36. Carra A, Mica E, Gambino G, Pindo M, Moser C, P猫 ME, Schubert A: Cloning and characterization of small non-coding RNAs from grape. / Plant J 2009, 59(5):750鈥?63. CrossRef
    37. Beauclair L, Yu A, Bouch茅 N: miRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis . / Plant J 2010, 62(3):454鈥?62. CrossRef
    38. Carvalho Luiz Joaquim CB, Schaal BA: Assessing genetic diversity in the cassava ( Manihot esculenta Crantz) germplasm collection in Brazil using PCR-based markers. / Euphytica 2001, 120(1):133鈥?42. CrossRef
    39. Olsen KM, Schaal BA: Microsatellite variation in cassava ( Manihot esculenta , Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. / Am J Bot 2001, 88(1):131鈥?42. CrossRef
    40. L茅a M, Doyle M, Gilda SM, Bruno C, Nick PR: The evolutionary fate of phenotypic plasticity and functional traits under domestication in manioc: changes in stem iomechanics and the appearance of stem brittleness. / PLoS One 2013, 8(9):1鈥?0.
    41. Zhong SL, Joung JG, Zheng Y, Chen YR, Liu B, Shao Y, Xiang JZ, Fei ZJ, Giovannoni JJ: High-throughput illumina strand-specific RNA sequencing library preparation. / Cold Spring Harb Protoc 2011, 2011(8):940鈥?49. CrossRef
    42. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. / Nat Protoc 2012, 7(3):562鈥?78. CrossRef
    43. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. / Nucle Acid Res 2004, 32:277鈥?80. CrossRef
    44. O鈥橰ourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP: An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. / Plant Physiol 2013, 161(2):705鈥?24. CrossRef
    45. Hofacker IL: Vienna RNA secondary structure server. / Nucle Acid Res 2003, 31:3429鈥?431. CrossRef
    46. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP: Prediction of plant microRNA targets. / Cell 2002, 110(4):513鈥?20. CrossRef
    47. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. / Genome Biol 2009, 10(3):R25. CrossRef
    48. Zheng Y, Zhang W: Animal microRNA target prediction using diverse sequence-specific determinants. / J Bioinform Comput Biol 2010, 8(4):763鈥?88. CrossRef
    49. Smith TF, Waterman MS: Identification of common molecular subsequences. / J Mol Biol 1981, 147:195鈥?97. CrossRef
    50. Wang XW: A PCR based platform for miRNA expression profiling studies. / RNA 2009, 15:716鈥?23. CrossRef
  • 刊物主题:Plant Sciences; Agriculture; Tree Biology;
  • 出版者:BioMed Central
  • ISSN:1471-2229
文摘
Background MicroRNAs (miRNAs) are small (approximately 21 nucleotide) non-coding RNAs that are key post-transcriptional gene regulators in eukaryotic organisms. More than 100 cassava miRNAs have been identified in a conservation analysis and a repertoire of cassava miRNAs have also been characterised by next-generation sequencing (NGS) in recent studies. Here, using NGS, we profiled small non-coding RNAs and mRNA genes in two cassava cultivars and their wild progenitor to identify and characterise miRNAs that are potentially involved in plant growth and starch biosynthesis. Results Six small RNA and six mRNA libraries from leaves and roots of the two cultivars, KU50 and Arg7, and their wild progenitor, W14, were subjected to NGS. Analysis of the sequencing data revealed 29 conserved miRNA families and 33 new miRNA families. Together, these miRNAs potentially targeted a total of 360 putative target genes. Whereas 16 miRNA families were highly expressed in cultivar leaves, another 13 miRNA families were highly expressed in storage roots of cultivars. Co-expression analysis revealed that the expression level of some targets had negative relationship with their corresponding miRNAs in storage roots and leaves; these targets included MYB33, ARF10, GRF1, RD19, APL2, NF-YA3 and SPL2, which are known to be involved in plant development, starch biosynthesis and response to environmental stimuli. Conclusion The identified miRNAs, target mRNAs and target gene ontology annotation all shed light on the possible functions of miRNAs in Manihot species. The differential expression of miRNAs between cultivars and their wild progenitor, together with our analysis of GO annotation and confirmation of miRNA: target pairs, might provide insight into know the differences between wild progenitor and cultivated cassava.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700