用户名: 密码: 验证码:
Channel capacity investigation of a linear massive MIMO system using spherical wave model in LOS scenarios
详细信息    查看全文
  • 作者:Liu Liu ; David W. Matolak ; Cheng Tao ; Yongzhi Li…
  • 关键词:massive MIMO ; channel model ; plane wave model ; spherical wave model ; channel capacity ; 022303 ; 规模多天线 ; 信道模型 ; 平面波模型
  • 球面波模型 信道容量
  • 刊名:SCIENCE CHINA Information Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:59
  • 期:2
  • 页码:1-15
  • 全文大小:738 KB
  • 参考文献:1.Rusek F, Persson D, Lau B K, et al. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag, 2013, 30: 40–60CrossRef
    2.Larsson E, Edfors O, Tufvesson F, et al. Massive MIMO for next generation wireless systems. IEEE Commun Mag, 2014, 52: 186–195CrossRef
    3.Ngo H Q, Larsson E, Marzetta T. Energy and spectral efficiency of very large multiuser MIMO Systems. IEEE Trans Commun, 2013, 61: 1436–1449CrossRef
    4.Ma Z, Zhang Z Q, Ding Z G, et al. Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Sci China Inf Sci, 2015, 57: 041301
    5.Wu S, Wang C X, Haas H, et al. A non-stationary wideband channel model for massive MIMO communication systems. IEEE Trans Wirel Commun, 2015, 14: 1434–1446CrossRef
    6.Wu S, Wang C X, Aggoune E-H, et al. A non-stationary 3-D wideband twin-cluster model for 5G massive MIMO channels. IEEE J Sel Area Commun, 2014, 32: 1207–1218CrossRef
    7.Ngo H Q, Larsson E, Marzetta T. Aspects of favorable propagation in massive MIMO. In: Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), Bristol, 2014. 76–80
    8.Xing C W, Ma S D, Fei Z S, et al. A general robust linear transceiver design for multi-hop amplify-and-forward MIMO relaying systems. IEEE Trans Signal Process, 2013, 61: 1196–1209CrossRef MathSciNet
    9.Bohagen F, Orten P, Oien G. Construction and capacity analysis of high-rank line-of-sight MIMO channels. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, 2005. 432–437
    10.Bohagen F, Orten P, Oien G. Design of optimal high-rank line-of-sight MIMO channels. IEEE Trans Wirel Commun, 2007, 6: 1420–1425CrossRef
    11.Bohagen F, Orten P, Oien G. On spherical vs. plane wave modeling of line-of-sight MIMO channels. IEEE Trans Commun, 2009, 57: 841–849
    12.Popovski P, Braun V, Ren Z. Deliverable D1.1 Scenarios, requirements and KPIs for 5G mobile and wireless system. Mobile and wireless communications Enablers for the Twenty-twenty Information Society. Technical Report. 2013
    13.Rappaport T, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5g cellular: It will work! IEEE Access, 2013, 1: 335–349CrossRef
    14.Hoydis J, Hosseini K, Brink S T, et al. Making smart use of excess antennas: massive MIMO, small cells, and TDD. BELL Labs Tech J, 2013, 18: 5–21CrossRef
    15.Rade L, Westergren B. Mathematics Handbook for Science and Engineering. Berlin/New York: Springer Lund (Sweden), 2004CrossRef MATH
    16.Haustein T, Kruger U. Smart geometrical antenna design exploiting the los component to enhance a MIMO system based on rayleigh-fading in indoor scenarios. In: Proceedings of the IEEE 14th International Symposium on Personal, Indoor and Mobile Radio Communications, Beijing, 2003. 1144–1148
    17.Tse D, Viswanath P. Fundamentals of Wireless Communication. New York: Cambridge University Press, 2005CrossRef MATH
    18.Capps C. Near field or far field? EDN, 2001. 95–101
    19.Liu L, Matolak D W, Tao C, et al. Far region boundary definition of linear massive MIMO antenna arrays. In: Proceedings of the 82nd IEEE Vehicular Technology Conference (VTC2015-Fall), Boston, 2015. 1–6
    20.Chen S Z, Zhao J. The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun Mag, 2014, 52: 36–43CrossRef
    21.Tulino A M, Verdú S. Random matrix theory and wireless communications. Found Trends Commun Inf Theory, 2004, 1: 1–182. http://​dx.​doi.​org/​10.​1561/​0100000001CrossRef
  • 作者单位:Liu Liu (1) (2) (3)
    David W. Matolak (2)
    Cheng Tao (1) (3)
    Yongzhi Li (1)
    Bo Ai (1)
    Houjin Chen (1)

    1. Institute of Broadband Wireless Mobile Communications, Beijing Jiaotong University, Beijing, 100044, China
    2. Department of Electrical Engineering University of South Carolina, olumbia, SC, 29208, USA
    3. National Mobile Communications Research Laboratory, Southeast University, Nanjing, 210096, China
  • 刊物类别:Computer Science
  • 刊物主题:Chinese Library of Science
    Information Systems and Communication Service
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1919
文摘
Massive multiple-input multiple-output (MIMO) is a key technology for the 5th generation (5G) of wireless communication systems. The traditional plane wave channel model (PWM) is often not suitable for the large antenna structure, and in certain cases should be replaced by the more accurate spherical wave model (SWM). By using the spherical wave characterization method, this paper investigates the channel capacity performance of a linear massive MIMO system in line-of-sight (LOS) scenarios. Two types of access settings, the point to point (PTP) system and multi-user (MU) system, are considered. In the PTP setting, a geometrical optimization is performed to obtain configurations that are able to generate a full rank channel matrix for a linear massive MIMO system, which yields full spatial diversity even in LOS scenarios. Compared with the approximate and commonly applied rank-1 PWM, this is very useful for fixed wireless access and radio relay systems requiring high throughput. For the MU case, we compare the eigenvalue distributions of the LOS channels using the plane wave and spherical wave characterization method, and sum rate results are obtained by Monte Carlo simulations. The results show that MU systems using the more realistic and accurate SWM can achieve a higher sum rate than results from the PWM. This is beneficial and informative when designing massive MIMO wireless networks. Keywords massive MIMO channel model plane wave model spherical wave model channel capacity

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700