用户名: 密码: 验证码:
Power allocation for massive MIMO: impact of power amplifier efficiency
详细信息    查看全文
  • 作者:Yingchu Guo ; Junlin Tang ; Gang Wu ; Shaoqian Li
  • 关键词:5G ; massive MIMO ; energy efficiency ; green communication ; power amplifier efficiency ; 022301 ; 5G ; 大规模MIMO ; 能量效率 ; 绿色通信 ; 功率放大器效率
  • 刊名:SCIENCE CHINA Information Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:59
  • 期:2
  • 页码:1-9
  • 全文大小:323 KB
  • 参考文献:1.Tse D, Viswanath P. Fundamentals of Wireless Communication. Cambridge: Cambridge University Press, 2005CrossRef MATH
    2.Lau V K N, Kwok Y K. Channel-Adaptation Technologies and Cross-Layer Design for Wireless Systems with Multiple Antennas—Theory and Applications. Hoboken: John Wiley & Sons, Inc., 2005
    3.Fettweis G P, Zimmermann E. ICT energy consumption—trends and challenges. In: Proceedings of 11th International Symposium on Wireless Personal Multimedia Communications, Lapland, 2008
    4.Aktas D, Bacha M, Evans J, et al. Scaling results on the sum capacity of cellular networks with MIMO links. IEEE Trans Inform Theory, 2006, 52: 3264–3274CrossRef MathSciNet MATH
    5.Mazetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 2010, 9: 3590–3600CrossRef
    6.Chen Y, Zhang S, Xu S, et al. Fundamental trade-offs on green wireless networks. IEEE Commun Mag, 2011, 49: 30–37CrossRef
    7.Rusek F, Persson D, Lau B K, et al. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag, 2013, 30: 40–60CrossRef
    8.Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 2013, 61: 1436–1449CrossRef
    9.Xu Z, Han S, Pan Z, et al. EE-SE relationship for large-scale antenna systems. In: Proceedings of IEEE International Conference on Communications Workshops, Sydney, 2014. 38–42
    10.Bjornson E, Hoydis J, Kountouris M, et al. Massive MIMO systems with non-ideal hardwares: energy efficiency, estimation, and capacity limits. IEEE Trans Inform Theory, 2014, 60: 7112–7139CrossRef MathSciNet
    11.Bjornson E, Sanguinetti L, Hoydis J, et al. Designing multi-user MIMO for energy efficiency: When is massive MIMO the answer? In: Proceedings of IEEE Wireless Communicatongs and Networking Conference, Istanbul, 2014. 242–247
    12.Joung J, Ho C K, Sun S. Power amplifier switching (PAS) for energy efficient systems. IEEE Wirel Commun Lett, 2013, 2: 14–17CrossRef
    13.Joung J, Ho C K, Sun S. Spectral efficiency and energy efficiency of OFDM systems: impact of power amplifiers and countermeasures. IEEE J Sel Area Commun, 2014, 32: 208–220CrossRef
    14.Raab F H, Asbeck P, Cripps S, et al. Power amplifiers and transmitters for RF and microwave. IEEE Trans Microwave Theory, 2002, 50: 814–826CrossRef
    15.Li G Y, Xu Z, Xiong C, Yang C, et al. Energy-efficient wireless communications: tutorial, survey, and open issues. IEEE Wirel Commun Mag, 2011, 18: 28–35CrossRef
    16.Kim H S, Daneshrad B. Energy-constrained link adaptation for MIMO OFDM wireless communication systems. IEEE Trans Wirel Commun, 2010, 9: 2820–2832CrossRef
    17.Xu Z, Yang C, Li G Y, et al. Energy-efficient configuration of spatial and frequency resources in MIMO-OFDMA systems. IEEE Trans Commun, 2013, 61: 564–575CrossRef
    18.Hussaini A s, Elfergani I T E, Rodriguez J, et al. Efficient multi-stage load modulation radio frequency power amplifier for green radio frequency front end. IET Sci Meas Technol, 2012, 6: 117–124CrossRef
    19.Krauss H L, Bostian C W, Raab F H. Solid State Radio Engineering. Hoboken: John Wiley & Sons, Inc., 1980
    20.Mohammed S K, Larsson E G. Per-antenna constant envelope precoding for large multi-user MIMO systems. IEEE Trans Commun, 2013, 61: 1059–1071CrossRef
    21.Boyd S P, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004CrossRef MATH
    22.Imran M A, Katranaras E, Auer G, et al. Energy efficiency analysis of the reference systems, areas of improvements and target breakdown. Technical Report INFSO-ICT-247733. 2011
    23.3GPP. Coordinated multi-point operation for LTE physical layer aspects. TR 36.819 v0.0.1. 3GPP Release 11. 2011. http://​www.​3gpp.​org/​

  • 作者单位:Yingchu Guo (1)
    Junlin Tang (1)
    Gang Wu (1)
    Shaoqian Li (1)

    1. National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu, 611731, China
  • 刊物类别:Computer Science
  • 刊物主题:Chinese Library of Science
    Information Systems and Communication Service
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1919
  • 文摘
    With the rapid development of information technology, massive MIMO is becoming attractive for the fifth generation (5G) communication because of its outstanding performance in both spectral efficiency (SE) and energy efficiency (EE). Recently, many algorithms have been proposed to improve the EE while achieving high SE in massive MIMO systems. In previous work, the power amplifier (PA) efficiency is always considered as a constant. However, the PA efficiency changes with the output power in reality. In the practical situation, the simplification which treats the PA efficiency as a constant will not get the EE optimization based on our analysis. In this paper, we propose a more general EE model of massive MIMO systems considering PA efficiency as a variable, and investigate a power allocation algorithm based on zero-forcing (ZF) precoding so that we can guarantee the SE and EE at the same time. Simulation results show the trade-off between EE and SE, demonstrate the distinction with previous work, and imply that relatively higher transmit power will be more energy efficient. Keywords 5G massive MIMO energy efficiency green communication power amplifier efficiency

    © 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

    地址:北京市海淀区学院路29号 邮编:100083

    电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700