用户名: 密码: 验证码:
Enhanced Intermolecular Hydrogen Bonds Facilitating the Highly Dense Packing of Energetic Hydroxylammonium Salts
详细信息    查看全文
文摘
The energy and performance of energetic materials can be improved by increasing their crystal packing density. Thus, we propose a strategy involving salification with hydroxylammonium cations (HA+) to increase the packing coefficients (PCs) and packing densities of energetic ionic salts (EISs). Structural analyses and theoretical calculations of the observed EISs indicate that the strong intermolecular hydrogen bonds (HBs) between HA+ and anions are primarily responsible for the increase in EIS density. Such strong HBs usually exist in HA+-based energetic salts and rarely in other EISs but are absent in energetic crystals with neutral molecules. Such HBs induce high PCs and relatively high crystal packing densities by compensating for the relatively lower molecular density of HA+ compared with other cations. Moreover, in combination with HBs in common explosives, we find a simple dependence showing that the shorter the strongest HB corresponds to the higher PC, suggesting that the strongest HB can be regarded as a simple indicator of PC. This study proposes that enhancing intermolecular HBs is the main strategy to increase compactness because H atoms usually exist in currently available energetic materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700