用户名: 密码: 验证码:
Active Plasmonic Nanoantennas for Controlling Fluorescence Beams
详细信息    查看全文
文摘
We propose a tunable plasmonic nanoantenna design that achieves steering fluorescence beams via a voltage signal. The configuration is composed of a nanometallic grating structure coated with a thin luminescent layer and a liquid crystals (LC) cell fixed above as a modulator. The angle-scanned fluorescence spectra show that fluorescence emitted from this metallic grating antenna has a high directivity (divergence angle 鈮?3掳) and the beams present a high monochromaticity (full width at half-maximum 鈮?14 nm). More importantly, the fluorescence wavelength can be continuously tuned at a high repetition rate according to the electric signal applied on the LC modulation layer. We further extended the tunable antenna design to a bullseye-shaped nanoantenna to achieve tunable complete-collimated beams. The active control strategy of luminescence based on plasmonic nanoantennas has a great practical significance in developing novel tunable nanoscale light sources.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700