用户名: 密码: 验证码:
Reversible-Switch Mechanism of the SAM-III Riboswitch
详细信息    查看全文
文摘
Riboswitches are self-regulatory elements located at the 5′ untranslated region of certain mRNAs. The Enterococcus faecalis SAM-III (SMK) riboswitch regulates downstream gene expression through conformational change by sensing S-adenosylmethionine (SAM) at the translation level. Using the recently developed systematic helix-based computational method, we studied the co-transcriptional folding behavior of the SMK riboswitch and its shortened construct lacking the first six nucleotides. We find that there are no obvious misfolded structures formed during the transcription and refolding processes for this riboswitch. The full-length riboswitch quickly folds into the ON-state in the absence of SAM, and the coupling between transcription and translation is not required for the riboswitch to function. The potential to form helix P0 is necessary for the riboswitch to function as a switch. For this thermodynamically controlled reversible riboswitch, the fast helix-exchanging transition pathway between the two functional structures guaranteed that this riboswitch can act as a reversible riboswitch.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700