用户名: 密码: 验证码:
Strongly Confined HgTe 2D Nanoplatelets as Narrow Near-Infrared Emitters
详细信息    查看全文
文摘
Two-dimensional colloidal nanoplatelets (NPLs), owing to the atomic-level control of their confined direction (i.e., no inhomogeneous broadening), have demonstrated improved photoluminescence (PL) line widths for cadmium chalcogenide-based nanocrystals. Here we use cation exchange to synthesize mercury chalcogenide NPLs. Appropriate control of reaction kinetics enables the 2D morphology of the NPLs to be maintained during the cation exchange. HgTe and HgSe NPLs have significantly improved optical features compared to existing materials with similar band gaps. The PL line width of HgTe NPLs (40 nm full width at half-maximum, centered at 880 nm) is a factor of 2 smaller than typical PbS nanocrystals (NCs) emitting at the same wavelength. The PL has a lifetime of 50 ns, almost 2 orders of magnitude shorter than small PbS colloidal quantum dots (CQDs), and a quantum yield of ∼10%, almost 2 orders of magnitude shorter than small PbS colloidal quantum dots (CQDs). These materials are promising for a large variety of applications spanning from telecommunications to the design of colloidal topological insulators.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700