用户名: 密码: 验证码:
Fabrication of Low Adsorption Energy Ni–Mo Cluster Cocatalyst in Metal–Organic Frameworks for Visible Photocatalytic Hydrogen Evolution
详细信息    查看全文
文摘
An effective cocatalyst is crucial for enhancing the visible photocatalytic performance of the hydrogen generation reaction. By using density-functional theory (DFT) and frontier molecular orbital (FMO) theory calculation analysis, the hydrogen adsorption free energy (ΔGH) of Ni–Mo alloy (458 kJ·mol–1) is found to be lower than that of Ni itself (537 kJ·mol–1). Inspired by these results, the novel, highly efficient cocatalyst NiMo@MIL-101 for photocatalysis of the hydrogen evolution reaction (HER) was fabricated using the double solvents method (DSM). In contrast with Ni@MIL-101 and Mo@MIL-101, NiMo@MIL-101 exhibited an excellent photocatalytic performance (740.2 μmol·h–1 for HER), stability, and high apparent quantum efficiency (75.7%) under 520 nm illumination at pH 7. The NiMo@MIL-101 catalyst also showed a higher transient photocurrent, lower overpotential (−0.51 V), and longer fluorescence lifetime (1.57 ns). The results uncover the dependence of the photocatalytic activity of HER on the ΔGH of Ni–Mo (MoNi4) alloy nanoclusters, i.e., lower ΔGH corresponding to higher HER activity for the first time. The NiMo@MIL-101 catalyst could be a promising candidate to replace precious-metal catalysts of the HER.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700