用户名: 密码: 验证码:
Double-Layered Perovskite Anode with in Situ Exsolution of a Co–Fe Alloy To Cogenerate Ethylene and Electricity in a Proton-Conducting Ethane Fuel Cell
详细信息    查看全文
  • 作者:Subiao Liu ; Karl T. Chuang ; Jing-Li Luo
  • 刊名:ACS Catalysis
  • 出版年:2016
  • 出版时间:February 5, 2016
  • 年:2016
  • 卷:6
  • 期:2
  • 页码:760-768
  • 全文大小:614K
  • ISSN:2155-5435
文摘
A new proton-conducting ethane fuel cell (PC-EFC) anode material comprised of double-layered perovskite (Pr0.4Sr0.6)3(Fe0.85Mo0.15)2O7 (DLP-PSFM) with uniformly dispersed in situ exsolution of Co–Fe alloy nanoparticles was prepared by annealing cubic perovskite Pr0.4Sr0.6Co0.2Fe0.7Mo0.1O3?δ in a 10% H2/N2 reducing atmosphere at 900 °C. The BaCe0.7Zr0.1Y0.2O3?δ electrolyte-supported PC-EFC single cell fabricated with the new DLP-PSFM anode material has achieved a maximal output power density of 496.2 mW cm–2 in H2 and 348.84 mW cm–2 in C2H6 at 750 °C. In the meantime, a high ethylene yield, increasing from 13.2% at 650 °C to 41.5% at 750 °C with a remarkable ethylene selectivity over 91% and no CO2 emission, was achieved because of the considerably efficient catalysis of in situ Co–Fe alloy nanoparticles that were homogeneously distributed on the DLP-PSFM backbone. Furthermore, a single cell under a constant current load of 0.65 A cm–2 reached a stable power output at 750 °C in C2H6 during the 100 h stability test. This indicates an excellent coking resistance, which is also supported by Raman spectra, X-ray diffraction patterns, and scanning electron microscopy image analyses. The results clearly indicate that the DLP-PSFM anode material possesses high ethane partial dehydrogenation activity, enhanced electrocatalytic activity, and good stability. On the basis of its remarkable performance in cogeneration of electricity and ethylene in PC-EFC, DLP-PSFM ceramic material is an attractive anode for a directly hydrocarbon-fueled solid oxide fuel cell.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700