用户名: 密码: 验证码:
Influence of Water on Anharmonicity, Stability, and Vibrational Energy Distribution of Hydrogen-Bonded Adducts in Atmospheric Reactions: Case Study of the OH + Isoprene Reaction Intermediate Using Ab
详细信息    查看全文
文摘
The effect of water on the stability and vibrational states of a hydroxy-isoprene adduct is probed through the introduction of 1鈥?5 water molecules. It is found that when a static nuclear harmonic approximation is invoked there is a substantial red-shift of the alcohol O鈥揌 stretch (of the order of 800 cm鈥?) as a result of introduction of water. When potential energy surface sampling and associated anharmonicities are introduced through finite temperature ab initio dynamics, this hydroxy-isoprene OH stretch strongly couples with all the water vibrational modes as well as the hydroxy-isoprene OH bend modes. A new computational technique is introduced to probe the coupling between these modes. The method involves a two-dimensional, time-frequency analysis of the finite temperature vibrational properties. Such an analysis not only provides information about the modes that are coupled as a result of finite-temperature analysis, but also the temporal evolution of such coupling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700