用户名: 密码: 验证码:
Simultaneous Determination of Critical Micelle Temperature and Micelle Core Glass Transition Temperature of Block Copolymer鈥揝olvent Systems via Pyrene-Label Fluorescence
详细信息    查看全文
文摘
The critical micelle temperature (CMT) and micelle core glass transition temperature (Tg) for a poly(methyl methacrylate) (PMMA)-poly(tert-butyl methacrylate) (PtBMA) diblock copolymer system were measured by fluorescence via single temperature (T) ramps. Synthesis yielded identical block lengths in unlabeled and pyrene-labeled diblocks, the latter with dye at the PMMA block terminus. Studies were conducted at 5鈥?8 wt % diblock in 2-ethylhexanol (2EH) with a trace of labeled diblock (0.2 wt % of total copolymer). The T dependence of pyrene-label fluorescence intensity yielded the CMT and micelle core Tg in systems where the PMMA-block and the 2EH within the cores constituted 1.9鈥?.8% of sample mass. While the CMT can be measured by many methods, this is the first direct measurement of micelle core Tg at low core content (e.g., 1.9 wt %) in a block copolymer/solvent system. Differential scanning calorimetry was done on diblock samples, showing severe limitations for sensing and characterizing core Tg. Fluorescence from trace levels of labeled diblock was used with 5鈥?0 wt % PMMA鈥損oly(n-butyl acrylate)鈥揚MMA triblocks in 2EH. The micelle core Tg is important in triblock systems that form thermoreversible gels because it fundamentally underlies the viscoelastic to elastic gel transition. Fluorescence results demonstrated the dependence of the CMT and the near invariance of the micelle core Tg on core-block molecular weight in these diblock and triblock systems for PMMA blocks with Mn = 15鈥?5 kg/mol and solvent in the micelle core.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700